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Abstract

The unit cell approach has been applied to study the effective elastic properties of a matrix type particulate composite

with transversely isotropic phases. The microgeometry of composite is modeled by a periodic structure with a unit cell

containing a certain number of arbitrarily placed and oriented spherical inclusions. The analytical, multipole expansion

based method of solution has been developed reducing the complicated primary periodic boundary-value problem for a

3D multiple-connected domain to an ordinary set of linear algebraic equations and providing, thus, its high numerical

efficiency. By analytical averaging the strain and stress fields the exact formulae for the effective stiffness tensor have

been derived. The numerical results are given showing an efficiency and accuracy of the method and disclosing the way

and extent to which the elastic properties mismatch, anisotropy degree and particle phase arrangement and orientation

statistics influence macroscopic stiffness of composite.
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1. Introduction

In the present work, the effective elastic properties of a particulate composite with transversely isotropic

phases are evaluated using so-called ‘‘unit cell’’ approach. Its basic idea consists in modeling an actual

microgeometry of composite by idealized periodic structure with a unit cell containing from one to several
particles. Then, the homogenization boundary-value problem is to be stated and solved for the unit cell.

Sometimes, this model is referred also as the ‘‘lattice’’ model reflecting the fact that the inclusions form a

spatially periodic array. The model is advantageous in that it provides a natural way, through the periodic

boundary conditions on the opposite cell facets, to take into account interactions among a whole infinite

array of inhomogeneities. Also, the deterministic (although rather complicated) geometry of unit cell
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enables an accurate solution of the corresponding periodic boundary-value problems. These features make

the unit cell approach to be appropriate for studying the high-filled strongly heterogeneous composites,

where the structure and interactions between the particles should be taken into account to a maximum

possible extent.
There is a number of papers where the unit cell approach has been applied to study the elastic pro-

perties of particulate composites with isotropic constituents. A periodic composite with the cubic lattice of

rigid spherical particles was studied by Nunan and Keller (1984) by the method of singular integral

equations. For a composite with elastic inclusions, an accurate solution has been obtained by Kushch

(1987) and Sangani and Lu (1987) who used the multipole expansion method. For the composites with

more general ellipsoidal shape of particles an approximate solution for the effective moduli has been

obtained by Iwakuma and Nemat-Nasser (1983). Sangani and Mo (1997) and Kushch (1997b) considered

more realistic structural model of composite with spheroidal inclusions and developed an accurate ana-
lytical, multipole expansion-based method of solution. Nemat-Nasser et al. (1993) and Kushch and

Sangani (2000) applied the unit cell approach to evaluate elastic stiffness of the solids containing penny-

shaped cracks.

Unlike the isotropic case, a few results can be found in literature relating the particulate composites with

anisotropic phases. The most work done up to date in this area is based on the Green�s function (point body

force solution) for an infinite solid. Mura (1982) has derived the implicit Eshelby�s type solution for a single

inclusion in an anisotropic medium. Withers (1989) has obtained the Eshelby�s tensor for an ellipsoi-

dal inhomogeneity embedded in a transversely isotropic matrix. The exact variational bounds and self-
consistent estimates for the scalar properties of anisotropic composites have been found in Willis (1977).

Sevostianov et al. (2004) has derived expressions for components of the stiffness/compliance contribution

tensors of a spheroidal inclusion embedded in a transversely isotropic matrix. They used the effective field

method of Kanaun and Levin (1994) to calculate effective elastic properties of a composite with transversely

isotropic phases. We also have to mention several papers addressing composite materials with transversely

isotropic piezoelectric phases. Elastic properties can be obtained from these results as a particular case. So,

in the method of conditional moments developed by Khoroshun et al. (1989), the one-point correlation of

random stress and strain fields were retained in the solution. Various methods of averaging are discussed
and detailed literature review is given by Sevostianov et al. (2001).

Noteworthy, in all the mentioned works the one-particle approximation based on the solution of the

Eshelby problem is used. The structure parameters one can take into account in this model are shape of

inclusions and volume content of disperse phase. Hence, one can expect it to work well for the composites

with low and moderate volume content of disperse phase. The Willis (1975) paper is possibly the only work

where the model with more that one inhomogeneity in an anisotropic elastic solid was considered. There,

the problem for two interacting spherical voids was formulated in terms of integral equation for the

transformation stress in equivalent homogeneous inclusion and, using the iterative perturbation technique,
an explicit approximate solution has been obtained for polynomials up to second degree. The available by

now applications of the unit cell model (e.g. Rodriguez-Ramos et al., 2001) are confined to the fiber re-

inforced composites. To the best knowledge of authors, this approach never been applied to the particulate

composites with anisotropic constituents.

Recently, Kushch (2004) has extended the multipole expansion method on the transversely isotropic

elasticity and obtained an accurate series solution for a solid containing a finite array of arbitrarily placed

and oriented spherical inclusions. In the present paper, this method is further developed and combined with

the unit cell model to evaluate the effective elastic properties of particulate composite with transversely
isotropic phases. To expose a basic technique of the method, the simple periodic model is considered first.

Then, an accurate solution for the generalized periodic structure is obtained. The finite exact expression of

the effective elastic stiffness tensor is derived by analytical averaging of the strain and stress fields. The

numerical results are presented and discussed in Section 6.
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2. The problem statement

In the Cartesian coordinate system Oxyz with Oz axis aligned with the anisotropy axis of transversely

isotropic elastic material, the generalized Hook�s law r ¼ C � �e has the form
rx ¼ C11ex þ C12ey þ C13ez; sxz ¼ 2C44exz;

ry ¼ C12ex þ C11ey þ C13ez; syz ¼ 2C44eyz;

rz ¼ C13ex þ C13ey þ C33ez; sxy ¼ C11ð � C12Þexy :
ð1Þ
Here, two-indices notation Cij ¼ Ciijj is accepted for components of the fourth rank stiffness tensor C. The

components of the stress tensor r satisfy the elastic equilibrium equations r � r ¼ 0 and the small strain

tensor e is related to the displacement vector u by e ¼ 1
2
½ruþ ðruÞT�.

We consider two-phase composite material consisting of a continuous phase (matrix) with embedded

spherical inclusions of radius R. The matrix and inclusions are assumed to be elastic and transversely
isotropic and perfectly bonded:
ðuþ � u�ÞjS ¼ 0; ðTðuþÞ � Tðu�ÞÞjS ¼ 0; ð2Þ
where T ¼ r � n the normal traction vector and n is the outer normal unit vector at the surface S. Here and

below, all the parameters associated with the matrix and inclusion are denoted by the superscript ‘‘)’’ and
‘‘+’’, respectively: C ¼ C� in the matrix and C ¼ Cþ in the inclusions. We do not assume the anisotropy

axes of the matrix and inclusion materials to be aligned and introduce the material-related Cartesian co-
ordinate systems Ox�y�z� and Oxþyþzþ with common origin in the center of inclusion. The coordinates of a

point and the vector components in these coordinate bases are related by
xþi ¼ Xijx�j ; uþi ¼ Xiju�j ; ð3Þ
where X is the rotation matrix: XT ¼ X�1 and detX ¼ 1.
We assign the macroscopic strain tensor
E ¼ hei ¼ 1

V

Z Z Z
V

edV ð4Þ
to be a governing parameter of the problem, V being a representative volume of composite. Alternatively,

the loading parameter can be taken in the form of macroscopic stress tensor, S ¼ hri ¼ 1
V

R R R
V rdV . We

consider macroscopically homogeneous stress state of composite assuming both the E and S to be constant.

Due to linearity of the problem, the relationship between these tensors can be written in the form
hri ¼ C�hei; ð5Þ

where C� is the macroscopic, or ‘‘effective’’, stiffness tensor of a composite. The main objective of this paper

is to determine the tensor C� of a particulate composite with transversely isotropic phases. It will be ac-

complished by solving a series of the model problems: namely, C�
ijkl ¼ hriji provided that components of the

macroscopic strain tensor are given by hemni ¼ dmkdnl, where dij is the Kronecker�s delta.
3. Unit cell model

3.1. Simple cubic lattice of inclusions

To expose the basic technique of the method, we consider first the simplest periodic model of particulate

composite consisting of a continuous matrix with a periodic array of equal spherical inclusions of radius R
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embedded. The centers of particles lie in the nodes of simple cubic (SC) lattice. Geometry of this model is

defined either by the distance a between the neighbouring particles or, alternatively, by the volume content

of dispersed phase c ¼ 4
3
pðR=aÞ3. To solve for this model accurately, we shall follow the approach deve-

loped by Kushch (1997b) and decompose the displacement vector u� in the matrix domain into a sum of
linear part U0 ¼ E � r� and periodic disturbance U1 produced by the inhomogeneities. It follows from (32)

that u� ¼ U0 þU1 comply the condition (4).

The disturbance displacement field U1 is a periodic function of spatial coordinates and, hence, can be

expanded into a series over the triply periodic solutions bFFðjÞ
ts of the equilibrium equations. Their explicit

form is given by (A.11), where the functions F s
t (A.7) are replaced by their periodic counterparts, bFFts (B.1).

The lattice nodes are the singularity points of these functions and, thus, bFFðjÞ
ts can be thought as the periodic

singular solution. Thus, we have
u� ¼ E � r� þ
X3
j¼1

X1
t¼1

X
jsj6 tþ1

AðjÞ
ts
bFFðjÞ
ts ðr�Þ; ð6Þ
where AðjÞ
ts are the unknown series expansion coefficients.

On the contrary, the displacement field uþ within an inclusion has no singularity and hence its series
expansion contains the regular solutions fðjÞts only:
uþ ¼
X3
j¼1

X1
t¼0

X
jsj6 tþ1

DðjÞ
ts f

ðjÞ
ts ðrþÞ: ð7Þ
Here, DðjÞ
ts as well as AðjÞ

ts in (6) are the unknown constants which are to be chosen so that to satisfy the
interface boundary conditions (2). To obtain a resolving set of equations for the unknowns AðiÞ

ts and DðiÞ
ts , we

utilize the representation (A.12) of the functions FðiÞ
ts and fðiÞts on the surface r ¼ R, rewritten in the compact

form as
FðiÞ
ts jS ¼

X3
j¼1

UGji
tsv

sj
t ej; fðiÞts jS ¼

X3
j¼1

UMji
tsv

sj
t ej; ð8Þ
where
UGts ¼ UGij
ts

� �
¼

Qs�1
t ðn10Þ Qs�1

t ðn20Þ Qs�1
t ðn30Þ

�Qsþ1
t ðn10Þ �Qsþ1

t ðn20Þ Qsþ1
t ðn30Þ

k1ffiffiffi
m1

p Qs
t ðn10Þ k2ffiffiffi

m2
p Qs

tðn20Þ 0

0B@
1CA;

UMts ¼ UMij
ts

� �
¼

P s�1
t ðn10Þ P s�1

t ðn20Þ P s�1
t ðn30Þ

�P sþ1
t ðn10Þ �P sþ1

t ðn20Þ P sþ1
t ðn30Þ

k1ffiffiffi
m1

p P s
t ðn10Þ k2ffiffiffi

m2
p P s

t ðn20Þ 0

0B@
1CA
and ei are the complex Cartesian vectors defined in Appendix A; s1 ¼ s� 1, s2 ¼ sþ 1 and s3 ¼ s.
Substituting (8) into (7) gives us
uþ ¼
X3
i¼1

X1
t¼0

X
jsj6 tþ1

X3
a¼1

UM iaþ
ts DðaÞ

ts

" #
vsit ðh

þ;uþÞeþi : ð9Þ
To obtain the local expansion of u� (6) in the form analogous to (9) we note that the regular part U0 can be
written as a linear combination of the functions f

ðjÞ
1s , whose Cartesian components are the polynomials of

first order. After some algebra, we get
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E � r� ¼
X3
j¼1

X1
t¼0

X
jsj6 tþ1

eðjÞts f
ðjÞ
ts ðr�Þ; ð10Þ
where
eð1Þ10 ¼ d�
1 m

�
1

k�1 m
�
2 � k�2 m

�
1

½E33m
�
2 þ k�2 ðE11 þ E22Þ�;

eð1Þ11 ¼ �eð1Þ1;�1 ¼
d�
1

ffiffiffiffiffi
m�1

p

k�1
ðE13 � iE23Þ;

eð1Þ12 ¼ eð1Þ1;�2 ¼ ðE11 � E22 � 2iE12Þ;

eð2Þ10 ¼ � m�2 d
�
2

k�1 m
�
2 � k�2 m

�
1

½E33m
�
1 þ k�1 ðE11 þ E22Þ�;

eð3Þ11 ¼ eð3Þ1;�1 ¼
ffiffiffiffiffi
m�3

p
d�
3

k�1
ð1� k�1 ÞðE13 � iE23Þ;

ð11Þ
all other coefficients eðiÞts are equal to zero. For the definiteness sake, we assume here and below m1 6¼ m2; in
the case of equal roots m1 and m2 of Eq. (A.3), one has to use fð2Þts and Fð2Þ

ts in the form (A.16) rather than

(A.11) in (6)–(10) and all the subsequent formulae.

Expansion of the periodic part U1 utilizes the formula
bFFðiÞ
ts ðr; diÞ ¼ FðiÞ

ts ðr; diÞ þ
X1
k¼0

X
jlj6 kþ1

ĝgtk;s�lð0; diÞf
ðiÞ
kl ðr; diÞ ð12Þ
following directly from the corresponding formula for scalar harmonics (B.10). Combining (6) with (12)

and (8), we come to
u� ¼
X3
j¼1

X1
t¼0

X
jlj6 tþ1

X3
a¼1

UGja�
tl AðaÞ

tl

"
þ UMja�

tl ðaðaÞtl þ eðaÞtl Þ
#
vljt ðh�;u�Þe�j ; ð13Þ
where
aðjÞts ¼
X1
k¼0

X
jlj6 kþ1

ĝgkt;l�sð0; d�
j ÞA

ðjÞ
kl ð14Þ
and ĝgðl�sÞ
kt are the triple infinite (lattice) sums given by (B.11) (Appendix B).

The local expansions of u� (13) and uþ (9) are still written in the differently oriented coordinate bases.

Therefore, before substituting them into (2), uþ has to be expressed in terms of the variables h�, u� and
vectors e�j . To this end, we apply the formula derived by Bateman and Erdelyi (1953):
vst ðh
þ;uþÞ ¼

X
jlj6 t

ðt þ lÞ!
ðt þ sÞ! S

t�s;t�l
2t ðwÞvltðh

�;u�Þ; ð15Þ
where Ssl
2t are the spherical harmonics in four-dimensional space and w is the vector of Euler�s parameters

related to the rotation matrix X by
X ¼
w2

2 � w2
1 � w2

3 þ w2
4 2ðw2w3 � w1w4Þ 2ðw1w2 þ w3w4Þ

2ðw2w3 þ w1w4Þ w2
3 � w2

1 � w2
2 þ w2

4 2ðw1w3 � w2w4Þ
2ðw1w2 � w3w4Þ 2ðw1w3 � w2w4Þ w2

1 � w2
2 � w2

3 þ w2
4

0B@
1CA: ð16Þ



890 V.I. Kushch, I. Sevostianov / International Journal of Solids and Structures 41 (2004) 885–906
Transformation of the vectors ei uses the formula
eþi ¼ X�
ije

�
j ; where X� ¼ D�1XD and D ¼

1 1 0

�i i 0

0 0 1

0@ 1A: ð17Þ
Applying (15) and (17) to (9) gives
uþ ¼
X3
j¼1

X1
t¼0

X
jlj6 tþ1

X3
i¼1

X�
ij

X
jsj6 tþ1

ðt þ ljÞ!
ðt þ siÞ!

St�si;t�lj
2t ðwÞ

"
�
X3
a¼1

UM iaþ
ts DðaÞ

ts

#
vsit ðh

�;u�Þe�i : ð18Þ
Now, we substitute u� (13) and transformed expression of uþ (18) into the first of conditions (2) and exploit

the orthogonality property of spherical harmonics vst on the surface S to decompose the vectorial functional

equality uþ ¼ u� into a set of linear algebraic equations. In matrix notation, it can be written as
UG�
tl � Atl þUM�

tl � ðatl þ etlÞ ¼
X

jsj6 tþ1

UM�
tsl �Dts; t ¼ 0; 1; 2; . . . ; jlj6 t þ 1; ð19Þ
where
UM�
tsl ¼ WtslUMþ

ts ; W ji
tsl ¼ X�

ij

ðt þ ljÞ!
ðt þ siÞ!

St�si;t�lj
2t ðwÞ; ð20Þ

Atl ¼ ðAð1Þ
tl ;A

ð2Þ
tl ;A

ð3Þ
tl Þ

T
and atl ¼ ðað1Þtl ; a

ð2Þ
tl ; a

ð3Þ
tl Þ

T
;

the vectors Dtl and etl are of the same structure.

Obtaining the second set of equations follows the same way with only difference that, instead of (A.12),
the representation (A.13) of the normal traction vectors TnðfðjÞts Þ and TnðfðjÞts Þ on the surface r ¼ R is to be

utilized. After transformations, we obtain
TG�
tl � Atl þ TM�

tl � ðatl þ etlÞ ¼
X

jsj6 tþ1

TM�
tsl �Dts; ð21Þ
where TM�
tsl ¼ WtslTM

þ
ts . Form of the matrices TGtl and TMtl is clear form (A.13). Eqs. (19) and (21)

together form a complete set of linear equations from where AðiÞ
ts and DðiÞ

ts can be determined. An attempt to

solve this linear system discovers, however that its determinant is equal to zero. The reason is that, for a

given t, some of the functions fðiÞts at jsjP t are linearly dependent: e.g., f
ð1Þ
t;tþ1 � f

ð2Þ
t;tþ1 and f

ð2Þ
t;tþ1 � f

ð3Þ
t;tþ1. Really,

we have 3(2t þ 3) vectorial solutions of order t introduced whereas the number of independent functions is

equal to 3(2t þ 1) (remind, the Cartesian components of fðiÞts are the polynomials of order t (A.11) and f s
t � 0

for jsj > t). Due to the same reason, not all the eðjÞ1s are represented in (11). Adding six additional constraints

Dð2Þ
t;�t ¼ 0, Dð2Þ

t;�ðtþ1Þ ¼ 0 and Dð3Þ
t;�ðtþ1Þ ¼ 0 to (19) and (21) gives, finally, a well-posed set of linear equations

possessing an unique solution.

3.2. Generalized periodic structure model

Let us consider now a composite of periodic structure with a unit cell of cubic form containing N non-

touching equal-sized spherical particles with the centers located in the points Oq, q ¼ 1; 2; . . . ;N . We in-
troduce the local material-related coordinate systems Oxþq y

þ
q zþq which origin and orientation with respect to

the global Cartesian coordinate system Ox�y�z� is defined by the vector Rq and the rotation matrix Xq. The

matrix-inclusion interface conditions, consistent with (2), are
ðuþq � u�ÞjSq ¼ 0; ðTnðuþq Þ � Tnðu�ÞÞjSq ¼ 0; q ¼ 1; 2; . . . ;N : ð22Þ
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In (22), uþq is the displacement vector in the volume of qth inclusion which, by analogy with (7) can be

written as
uþq ¼
X3
j¼1

X1
t¼0

X
jsj6 tþ1

DðqÞðjÞ
ts fðjÞts ðrþq Þ: ð23Þ
To construct solution for a multiply connected matrix domain, we shall follow the procedure described by

Kushch (1997b). According to the superposition principle, the displacement vector u� can be written as a

sum of linear far field and the disturbance fields induced by each separate inclusion:
u� ¼ E � r� þ
XN
p¼1

UpðrpÞ; rp ¼ r� � Rp: ð24Þ
By analogy with (6), each singular term Up allows series expansion of the form
UpðrpÞ ¼
X3
j¼1

X1
t¼0

X
jsj6 tþ1

AðpÞðjÞ
ts

bFFðjÞ
ts ðr�p Þ; ð25Þ
where AðpÞðjÞ
ts as well as DðqÞðjÞ

ts in (23) are the series expansion coefficients to be found from the boundary

conditions (22).

Note that the separate terms of the sum in (25) are written in the different coordinate systems. To enable

application the procedure described in the previous section, we need first to express u� in the variables of

the local, say qth, coordinate system. Such a transform for p 6¼ q is based on using the re-expansion for-

mulae for the singular vectorial solutions FðjÞ
ts due to translation of the coordinate system origin:
bFFðjÞ
ts ðr�p Þ ¼

X1
k¼0

X
jlj6 kþ1

ĝgtk;s�lðRpq; d�
j Þf

ðjÞ
kl ðr�q Þ; t ¼ 0; 1; 2; . . . ; jsj6 t þ 1; ð26Þ
following directly from the corresponding result for the scalar harmonic functions F s
t (B.2). We apply (26)

to all the sum terms in (25) but that one with p ¼ q which requires (12) to be applied. After some algebra,

we find
u�ðr�q Þ ¼
X3
j¼1

X1
t¼0

X
jsj6 tþ1

AðqÞðjÞ
ts FðjÞ

ts ðr�q Þ
h

þ ðaðqÞðjÞts þ eðqÞðjÞts ÞfðjÞts ðr�q Þ
i
; ð27Þ
where
aðqÞðjÞts ¼
X1
k¼0

X
jlj6 kþ1

XN
p¼1

ĝgkt;l�sðRpq; d�
j ÞA

ðpÞðjÞ
kl ð28Þ
and eðqÞðjÞts are the expansion coefficients of the linear part of (24) given by the formula (10).

After the local expansion of u� in the vicinity of the point Oq is found, the remaining part of solving
procedure follows the way described in the Section 3.1. The resolving set of linear algebraic equations is
UG
ðqÞ�
tl � AðqÞ

tl þUM
ðqÞ�
tl � ðaðqÞtl þ e

ðqÞ
tl Þ ¼

X
jsj6 tþ1

M
ðqÞ�
tsl �DðqÞ

ts ;

TG
ðqÞ�
tl � AðqÞ

tl þ TM
ðqÞ�
tl � ðaðqÞtl þ e

ðqÞ
tl Þ ¼

X
jsj6 tþ1

TM
ðqÞ�
tsl �DðqÞ

ts ;

q ¼ 1; 2; . . . ;N ; t ¼ 0; 1; 2; . . . ; jlj6 t þ 1;

ð29Þ
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where a
ðqÞ
tl ¼ aðqÞðjÞts ; aðqÞðjÞts ; aðqÞðjÞts

� �T
and aðqÞðjÞts are given by (28). Its approximate solution can be obtained by

the truncation method, when the unknowns and equations with t6 tmax only are retained in the (29). The
solution is convergent for tmax ! 1 provided that the non-touching conditions kRpqk > 2R are satisfied for

each pair of inclusions. Thus, we can solve (29) for A
ðqÞ
tl and DðqÞ

ts with any desirable accuracy by taking tmax

sufficiently large. It is seen form the Table 1 in the Section 5 that the convergence rate is sufficiently high for

a whole range of the problem parameters excluding only the nearly touching rigid inclusions. An asymp-

totic analysis of this extreme case, however, is beyond the scope of this paper.
4. Effective stiffness tensor

The macroscopic, or effective, elastic stiffness tensor is defined by Eq. (5) where, due to periodicity of

structure, the unit cell can be taken as a representative volume element of periodic composite. For such a

composite, integration of the strain and stress fields corresponding to the displacement vector (23), (24) can

be carried out analytically. As it was mentioned already, the components of the effective stiffness tensor can

be found as C�
ijkl ¼ hriji, where the stress r is calculated for hekli ¼ 1, hek0l0 i ¼ 0ðk 6¼ k0, l 6¼ l0Þ. First, we

apply the Gauss� theorem to calculate the average strain:
Table

Conve

tmax

1

3

5

7

9

11

13

15
V heiji ¼
Z Z Z

V �

e�ij dV þ
XN
q¼1

Z Z Z
V þ
q

eþij dV

¼ 1

2

Z Z
R

ðu�i nj þ u�j niÞdS þ 1

2

XN
q¼1

Z Z
Sq

uðqÞþi

�h
� u�i

�
nj þ uðqÞþj

�
� u�j

�
ni
i
dS; ð30Þ
where Vq is domain occupied by qth inclusion, V ¼ V � þ
PN

q¼1 V
þ
q and R is the unit cell boundary. Taking

the first of interface conditions (2) and periodicity of solution (24) into account, we get easily
heiji ¼
1

2V

Z Z
R

ðu�i nj þ u�j niÞdS ¼ Eij; ð31Þ
i.e. E has a meaning of the macroscopic strain tensor, in accordance with (4). Thus,
C�
ijkl ¼ hrijijEmn¼dmkdnl

: ð32Þ
To compute the average stress, we make use of the identity rij ¼ o
oxk

ðxjrikÞ and the Gauss� theorem to obtain
V hriji ¼
Z Z Z

V �

rij dV þ
XN
q¼1

Z Z Z
V þ
q

rij dV ¼
Z Z

R

r�
iknkxj dS þ

XN
q¼1

Z Z
Sq

rðqÞþ
ik nk

�
� r�

iknk
�
xj dS: ð33Þ
1

rgence rate of the effective stiffness C�
33 of composite with SC lattice of inclusions with tmax increased, A ¼ 5

c ¼ 0:1 c ¼ 0:3 c ¼ 0:5

k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1
8.274 12.41 5.664 19.60 3.614 32.84

8.257 12.42 5.534 20.39 3.307 43.71

8.257 12.43 5.533 20.48 3.292 49.21

8.257 12.43 5.533 20.49 3.289 52.11

8.257 12.43 5.533 20.49 3.287 53.47

8.257 12.43 5.533 20.49 3.286 54.16

8.257 12.43 5.533 20.49 3.285 54.48

8.257 12.43 5.533 20.49 3.285 54.57
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According to (22), the traction vector T ¼ r � n is continuous through the spherical interface Sq and, thus,
V hriji ¼
Z Z

R

T�
i xj dS: ð34Þ
It follows from the Betti�s reciprocal theorem that the equality
Z Z
R

0B@ �
XN
q¼1

Z Z
Sq

1CAðT�
k u

0
k � T 0

ku
�
k ÞdS ¼ 0; ð35Þ
where T0 ¼ Tðu0Þ, is valid for any displacement vector u0 satisfying the governing equations. We take it in

the form u0k ¼ dikxj; it is straightforward to show that in this case
Z Z
R

T�
k u

0
k dS ¼

Z Z
R

r�
il nlxj dR ¼ V hriji: ð36Þ
On the other hand,
T 0
ku

�
k ¼ r0

klnlu
�
k ¼ 1

2
C�

mnklðdmidnj þ dmjdniÞnlu�k ; ð37Þ
comparison with (31) gives us
1

V

Z Z
R

T 0
ku

�
k dR ¼ C�

ijaaheaaidij þ C�
ijijheijið1� dijÞ ð38Þ
and, thus,
hriji ¼ C�
ijaaheaaidij þ C�

ijijheijið1� dijÞ þ
1

V

XN
q¼1

Z Z
Sq

ðT�
k u

0
k � T 0

ku
�
k ÞdS: ð39Þ
The formula (39) is valid for an arbitrary orientation of inclusions and a general anisotropy type of phase

materials. To compute average stress from (39), one needs to integrate the matrix fields only; with the local

series expansions (13) and (27) taken into account, this task is rather trivial. Moreover, it follows from the

Betti�s theorem that for all the regular solutions fðjÞts these integrals are equal to zero. Among the singular
solutions FðjÞ

ts , only those with t ¼ 1 contribute hriji: after some algebra, we get the exact explicit formulae:
hr11i ¼ C�
1khekki � C�

11

ffiffiffiffiffi
m�1

p ~AAð1Þ
10

�
þ ffiffiffiffiffi

m�2
p ~AAð2Þ

10

�
þ C�

44

2

ð1þ k�j Þffiffiffiffiffi
m�j

p Re~AAðjÞ
12 ;

hr22i ¼ C�
2khekki � C�

11

ffiffiffiffiffi
m�1

p ~AAð1Þ
10

�
þ ffiffiffiffiffi

m�2
p ~AAð2Þ

10

�
� C�

44

2

ð1þ k�j Þffiffiffiffiffi
m�j

p Re~AAðjÞ
12 ;

hr33i ¼ C�
3khekki � C�

33

k�1ffiffiffiffiffi
m�1

p ~AAð1Þ
10

�
þ k�2ffiffiffiffiffi

m�2
p ~AAð2Þ

10

�
;

hr12i ¼ C�
66he12i þ

C�
44

2

ð1þ k�j Þffiffiffiffiffi
m�j

p Im~AAðjÞ
12 ;

hr13i � ihr23i ¼ C�
44ðhe13i � ihe23iÞ þ

C�
44

2
½ð1þ 2k�1 Þ~AA

ð1Þ
11 þ ð1þ 2k�2 Þ~AA

ð2Þ
11 � ~AAð3Þ

11 �;

ð40Þ
where ~AAðjÞ
1s ¼ ðd�Þ2 c

N

PN
q¼1 A

ðqÞðjÞ
1s .
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5. Numerical results

In this section, we present several numerical examples demonstrating numerical efficiency and accuracy

of the method developed and showing, at the same time, how the selected microstructure parameters in-
fluence the macroscopic elastic stiffness of a composite. Noteworthy, numerical algorithm of the method is

rather simple and consists in computing the triple sums (B.11) which enter the matrix elements of the in-

finite algebraic system (39) and then solving the truncated linear system by some standard method. The

typical number of unknowns retained in the resolving set of equations varies from tens to a several hun-

dreds depending on complexity of the problem being considered. This is a very moderate number in

comparison with the tens and hundreds of thousand equations in the 3D finite element analysis of similar

problems which proves the above algorithm to be highly efficient form the computational standpoint.

With the number of inclusions inside the unit cell increased the computational effort of triple sums (B.11)
evaluation grows as N 2 and, for N small, is the most time-consuming part of algorithm. However, for

N J 10, the proper choice of linear solver becomes important and, when the dimension of truncated system

exceeds 103, the iterative algorithms rather than the direct OðN 3Þ methods should be applied. The recent

version of generalized minimum residual (GMRES) iterative solver by Fraysse et al. (1998) was found to be

quite appropriate for this purpose. With using the iterative solving procedure, the total computational time

scales as N 2 which enables carrying out the numerical simulations up to N ¼ 30–40 on a regular PC. For a

larger number of inclusions, an additional effort should be applied to provide fast and efficient numerical

realization of the method. One straightforward way to do this is to incorporate the above solution into a
general scheme of the OðNÞ algorithm by Sangani and Mo (1995).

The problem considered has a number of parameters: they are five components of the matrix C�, five

components of the matrix Cþ, three components of the position vector Rq and three components of the

rotation matrix Xq for each of N particles and six components of the macroscopic strain tensor, E. An

exhaustive parametric study of the problem is not a subject of the paper. Although no restrictions but the

particle-to-particle non-touching condition were imposed on the structure, phase properties and loading

type, in the subsequent numerical study we shall keep most of the parameters fixed and present the nu-

merical data giving a general idea how spatial arrangement and orientation of the particles and anisotropy
degree of phase materials affect the effective elastic stiffness of composite. Three particle arrangement types

considered in our numerical study are:

(a) simple cubic (SC) structure, N ¼ 1;

(b) body-centered cubic (BCC) structure, which can be thought as a particular case of a generalized peri-

odic model with N ¼ 2 and R12 ¼ ða=2; a=2; a=2Þ;
(c) quasi-random (QR) structure, N ¼ 16.

In all above cases, c ¼ 4
3
pNðR=aÞ3, where a is the lattice period.

To minimize number of the independent elastic constants, we put mþ12 ¼ m�12 ¼ 0:25, mþ13 ¼ m�13 ¼ 0:25,
G�

13 ¼ 1 and E�
1 ¼ 2:0. Here and below Ei, Gij and mij are the Young�s moduli, the shear moduli and the

Poisson�s ratios, respectively, related to Cij by
G12 ¼ C66 ¼ ðC11 � C12Þ=2; G23 ¼ G13 ¼ C44;

E1 ¼ E2 ¼ 2
1

C11 � C12

�
þ C33

D

��1

; E3 ¼
D

ðC11 þ C12Þ
;

m13 ¼ m23 ¼ C13=ðC11 þ C12Þ; m12 ¼
E1

2

1

C11 � C12

�
� C33

D

�
;
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where D ¼ ðC11 þ C12ÞC33 � 2ðC13Þ2 and only five of these constants are independent. Two variable mate-

rial-related parameters are the matrix anisotropy degree A ¼ E�
3 =E

�
1 and the inclusion-to-matrix stiffness

ratio, k. Thus, we have E�
3 ¼ AE�

1 , G
þ
13 ¼ kG�

13, E
þ
1 ¼ kE�

1 and Eþ
3 ¼ kE�

3 . Two extreme cases we focus our

attention on are k ¼ 0 and k ¼ 1, corresponding to the cavities and rigid particles. For the elastic inclusion
Eþ
3 =E

þ
1 ¼ A; i.e., we assume the inclusion�s anisotropy degree to be equal to that of the matrix material.

Remind that although the expressions for effective elastic moduli (32), (40) are finite and exact, the

complete solution is given by the infinite series (23)–(25). For computations, we retain in theoretical so-

lution a finite number of harmonics with t6 tmax only and, to estimate accuracy of the numerical results

obtained, one needs to learn about the convergence of truncated solution with tmax increased. The data

presented in Table 1 show that, up to c ¼ 0:3 at least, value tmax ¼ 5 is sufficient to provide four-digit

accuracy. The convergence rate decreases significantly only in the extreme case of nearly touching rigid

inclusions. However, even for c ¼ 0:5, when the minimal distance between the surfaces of neighbouring
inclusions is as small as 1% of their radii, the value tmax ¼ 15 provides three-digit accuracy of the effective

moduli calculated. As it seen from the table, for a porous material (k ¼ 0) solution converges much more

rapidly: for a composite with elastic inclusions of finite stiffness, we can expect intermediate convergence

rate. Therefore, all the subsequent computations for composites of SC and BCC symmetry were performed

with tmax ¼ 15. However, for a composite with QR-array of inclusions the value tmax ¼ 7 was adopted in

order to reduce the computational effort. This choice was motivated by the fact that variation of the

computed values from one quasi-random structure realization to another exceeds greatly possible im-

provement in accuracy of solution by taking into account the higher harmonics.
In Table 2, the effective elastic properties of composite of SC structure are given as a function of volume

content of disperse phase. For c ¼ 0, they are the equal to those of the matrix material: C�
11 ¼ 2:179;

C�
12 ¼ 0:579; C�

13 ¼ 0:690; C�
33 ¼ 10:344 and C�

44 ¼ 1:0. Here and below, we put the anisotropy degree A ¼ 5.

Analogous data for the composite of BCC structure are given in Table 3. It is clearly seen from these tables

that the arrangement type affects the macroscopic properties of high-filled composite dramatically: for

c ¼ 0:5, C�
33 of composite with SC lattice of rigid particles more than two times exceeds C�

33 of composite of

BCC structure. So wide difference is quite predictable because for a composite with rigid inclusions

C�
ij ! 1 as c ! cmax, where cmax is a volume content of dense packing of particles, equal to 0.52 for SC and

0.68 for BCC structure. Value c ¼ 0:5 is close to cmax for SC array, resulting in much higher effective elastic

moduli as compared with BCC lattice. For a composite with weak inclusions or porous material, this effect

is less prominent because C� remains finite even for c ¼ cmax.

Note that although only five components of effective stiffness tensor are shown in Tables 2 and 3, the

periodic composite is not transversely isotropic on macro level even in the case of aligned anisotropy axes of

the matrix and inclusions. In the model considered, one of the lattice basis vectors is aligned with the

anisotropy axis of matrix material. Hence, one can expect the composite to be macroscopically orthotropic

and an additional anisotropy degree induced by the periodicity of microstructure can be estimated as the
ratio ðC�

11 � C�
12Þ=2C�

66, equal to 1 for a transversely isotropic material. It seen from Table 4 that anisotropy

is much stronger when the inclusions are arranged in the simple cubic array. On the other hand, the cavities
Table 2

Effective elastic properties of composite with SC lattice of cavities or rigid inclusions

c C�
11 C�

12 C�
13 C�

33 C�
44

k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1
0.1 1.810 2.716 0.464 0.685 0.552 0.827 8.257 12.43 0.811 1.213

0.2 1.508 3.464 0.366 0.786 0.428 0.957 6.785 15.60 0.638 1.458

0.3 1.243 4.552 0.282 0.874 0.322 1.078 5.533 20.48 0.488 1.783

0.4 0.996 6.375 0.208 0.942 0.232 1.185 4.400 29.03 0.359 2.296

0.5 0.749 11.73 0.140 0.990 0.152 1.267 3.286 54.57 0.243 3.694



Table 3

Effective elastic properties of composite with BCC lattice of cavities or rigid inclusions

c C�
11 C�

12 C�
13 C�

33 C�
44

k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1
0.1 1.791 2.676 0.471 0.703 0.569 0.848 7.955 12.18 0.826 1.236

0.2 1.459 3.287 0.385 0.866 0.471 1.045 6.159 14.52 0.675 1.538

0.3 1.174 4.069 0.313 1.078 0.394 1.301 4.652 17.45 0.542 1.970

0.4 0.926 5.134 0.251 1.369 0.327 1.648 3.406 21.25 0.422 2.637

0.5 0.710 6.731 0.194 1.807 0.261 2.164 2.422 26.66 0.311 3.763

0.6 0.518 9.732 0.140 2.666 0.190 3.173 1.666 36.32 0.209 6.099

Table 4

Effective anisotropy degree ðC�
11 � C�

12Þ=2C�
66 induced by the structure

c SC structure BCC structure

k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1
0.1 1.032 1.042 0.992 0.989

0.2 1.109 1.145 0.975 0.964

0.3 1.218 1.297 0.958 0.928

0.4 1.359 1.503 0.949 0.882

0.5 1.572 1.858 0.959 0.826
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as well as the rigid particles can be thought as extreme case of isotropic inclusions: adding them to an-
isotropic matrix must change an effective anisotropy measured as a ratio of the effective Young�s moduli,

E�
3=E

�
1. The relevant data given in Table 5 show that, with c growing, an anisotropy is decreasing to a bigger

extent in the case of BCC packing of inclusions.

Now, we consider a periodic composite containing N ¼ 16 particles randomly placed inside the unit cell.

We call this structure as quasi-random (QR): it was shown elsewhere (e.g. Sangani and Lu, 1987), that the

radial distribution function of such a structure is close to that predicted by the Percus–Yevick�s equation for

a perfectly disordered particulate composite. One can expect, therefore, the properties of our model to be

close to the properties of composite with random microstructure. To generate the model, the molecular
dynamics simulation algorithm similar to that described by Sangani and Lu (1987) was employed. Con-

figuration of the unit cell obtained by this way and hence the results of simulations vary from one run to

another and, to be statistically meaningful, they should be averaged over a certain number of runs. The

data given in the Table 6 were obtained by averaging over 30 realizations of QR structure: for all

the numbers presented there, the standard deviation is well below 3%. It is well-known fact that cmax of the

equal spheres random packing is about 0.63, close enough to the dense packing cmax ¼ 0:68 of BCC lattice.

Comparison with the results obtained for the simple periodic structures (Tables 2 and 3) shows that the
Table 5

Effective anisotropy parameter, ðE�
3=E

�
1Þ=A

c SC structure BCC structure

k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1
0.1 0.957 0.957 0.933 0.957

0.2 0.939 0.933 0.855 0.928

0.3 0.925 0.923 0.829 0.901

0.4 0.913 0.924 0.766 0.869

0.5 0.900 0.933 0.707 0.831



Table 6

Effective elastic properties of a composite with QR lattice (N ¼ 16) of cavities or rigid inclusions

c C�
11 C�

12 C�
13 C�

33 C�
44

k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1 k ¼ 0 k ¼ 1
0.1 1.80 2.71 0.47 0.70 0.57 0.85 7.77 12.2 0.83 1.26

0.2 1.46 3.42 0.38 0.86 0.47 1.06 5.74 14.7 0.67 1.62

0.3 1.16 4.43 0.30 1.07 0.39 1.33 4.27 18.0 0.53 2.13

0.4 0.90 5.72 0.24 1.37 0.32 1.69 2.94 23.0 0.41 2.91

0.5 0.69 7.33 0.19 1.77 0.26 2.15 2.18 29.3 0.31 4.04
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values obtained for a QR structure lie between the corresponding data for the simple cubic and BCC
models and that BCC model is better approximation of disordered structure as compared with SC.

Noteworthy, the anisotropy parameter ðC�
11 � C�

12Þ=2C�
66 calculated for QR model is close (within 2–3%) to

1. This result agrees well with the fact that a random structure composite of transversely isotropic matrix

and rigid particles is transversely isotropic on macro level and we can consider it as another validation of

our model.

The normalized values of C�
33 for three arrangement types considered by us are shown in Fig. 1. The

dotted vertical lines represent cmax for each structure type (remind, cmax is equal to 0.52, 0.63 and 0.68 for

SC, QR and BCC structure, respectively) and are, at the same time, asymptotic lines for C�
33 as c ! cmax.

When the particles are nearly in contact with their neighbours, convergence rate of the series (23)–(25) is

rather slow and the number of harmonics one has to take into account to provide an accurate solution is

prohibitively large. This extreme case requires a separate consideration: in the isotropic case A ¼ 1, the

asymptotic formulae for C�
ij at c ! cmax have been derived by Nunan and Keller (1984). An asymptotic

analysis of the problem is rather a subject of separate paper. However, our numerical study shows that the

value C�
33=C

�
33 for a composite filled with rigid particles depends on A only marginally and it is believed that
. . . .

Fig. 1. Normalized modulus C�
33=C

�
33 as a function of disperse phase volume content, c.
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the asymptotic analysis by Nunan and Keller (1984) with minor modifications can be applied to a com-

posite with transversely isotropic matrix.

In the above numerical analysis, the inclusions were assumed very hard or very soft as compared with the

matrix. In both cases, effect of inclusion orientation on the effective elastic response of composite is neg-
ligibly small. In fact, the interface conditions (2) reduce to Tðu�ÞjS ¼ 0 for k ¼ 0 and u�jS ¼ 0 for k ¼ 1,

effectively excluding inclusions from consideration. At finite k, however, orientation of inclusions can in-

fluence the effective stiffness quite significantly. To estimate effect of orientation factor separately, we

consider a composite with k ¼ 1: i.e., the inclusions are made from the same material as matrix does,

Cþ ¼ C�. It can be thought, in particular, as a model of polycrystalline material with anisotropic grains.

For the anisotropy axes of matrix and inclusions aligned, we have a homogeneous material with no local

stress concentration and, hence, C� ¼ C� regardless on the volume fraction and arrangement type of

particles. At the same time, misalignment of the phase materials results in considerable interface stress
concentration (Kushch, 2003) and we can expect the effective moduli to be affected by rotation as well.

So, consider a periodic composite with simple (SC or BCC) lattice of inclusions (k ¼ 1) and restrict

rotation of inclusions to the xz-plane. In this case, their orientation is determined uniquely by the single

Euler�s parameter b being an angle between the Oz� and Ozþ axes. In Fig. 2, the normalized modulus C�
11=C

�
11

is given as a function of rotation angle b. Here, the solid lines represent C�
11 of composite with BCC

structure with volume fraction of inclusions equal to 0.1, 0.3 and 0.5, respectively. The analogous data for a

composite of SC symmetry are shown by the dashed lines. The matrix material considered is stiffer in z-
direction (E�

3 ¼ 5E�
1 ) and, expectably, C

�
11 is growing with b increased and reaches at b ¼ p=2 the maximum

value which, in turn, grows monotonically with c. For non-dilute concentrations (cJ 0:1), the particles

arrangement type also affects the stiffness of composite: so, at c ¼ 0:5C�
11 is equal to 1.63 for SC and 1.93 for

BCC lattice case. The corresponding data for the normalized modulus C�
33=C

�
33 are given in Fig. 3. Unlike

C�
11, C

�
33 is reducing up to two times as b varies from 0 to p=2 whereas stiffness C�

22 in the direction of

rotation axis remains practically unchanged.

The last example we consider is a periodic composite with the unit cell containing N ¼ 16 arbitrarily

oriented inclusions whose centers form a BCC lattice. On each run, the random number generator was
.

.

.

.

.

.

.

. . . . .

Fig. 2. Normalized modulus C�
11=C

�
11 as a function of rotation angle b.
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Fig. 3. Normalized modulus C�
33=C

�
33 as a function of rotation angle b.

Table 7

Effective elastic properties of a composite with BCC lattice (N ¼ 16) of randomly oriented elastic inclusions, k ¼ 1

c C�
11 C�

12 C�
13 C�

33 C�
44

0.1 2.219 0.589 0.694 9.344 1.011

0.2 2.261 0.601 0.701 8.467 1.023

0.3 2.304 0.613 0.708 7.665 1.035

0.4 2.348 0.626 0.715 6.935 1.048

0.5 2.393 0.639 0.724 6.290 1.060

0.6 2.440 0.653 0.735 5.730 1.074
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utilized to prescribe orientation of each separate particle and, for c given, averaging over 30 structure
realizations was made to get the statistically valid data. The obtained by this way effective moduli are given

in Table 7. Interestingly, these data are found to be practically invariant to the spatial arrangement of

particles: simulations carried out for a unit cell with randomly placed and oriented inclusions gave the

same, within 2–3%, results. This is correct, however, in the case k ¼ 1 only. For a general type disordered

composite, both the arrangement and orientation statistics are to be taken into account.
6. Conclusions

The accurate and efficient analytical method has been developed to study the effective elastic properties

of a matrix type particulate composite with transversely isotropic phases. The microgeometry of composite

is modeled by a periodic structure with a unit cell containing a certain number of arbitrarily placed and

oriented spherical inclusions. The analytical, multipole series expansion method of solution has been de-

veloped reducing the complicated primary periodic boundary-value problem for 3D multiple-connected

domain to an ordinary set of linear algebraic equations and providing, thus, its high numerical efficiency.
By analytical averaging the strain and stress fields, the exact formulae for the effective stiffness tensor have
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been derived. The numerical results given show an accuracy of the method and disclose the way and extent

to which the selected structural parameters influence the macroscopic stiffness of composite.

Combination of the structural model flexible enough to approach an actual microstructure of composite

with the fast numerical algorithm makes the method developed to be an efficient tool for reliable predicting
the elastic properties of particulate composite with transversely isotropic phases. Although in the paper the

inclusions were assumed to be spherical, the method with minor modifications (Kushch, 1997a) can be

applied as well to study the effect of phase anisotropy in the composites with ellipsoidal inclusions and

penny-shaped cracks.

Appendix A. Partial solutions of the equilibrium equations of transversely isotropic elastic solid

The complete sets of partial vectorial solutions of the equilibrium equations of transversely isotropic

elastic solid have been introduced by Kushch (2004) using the well known representation of a general

solution by means of three potential functions
ux ¼
oU1

ox
þ oU2

ox
þ oU3

oy
; uy ¼

oU1

oy
þ oU2

oy
� oU3

ox
; uz ¼ k1

oU1

oz
þ k2

oU2

oz
: ðA:1Þ
The functions Uj satisfy the quasi-harmonic equation
o2

ox2

�
þ o2

oy2
þ mj

o2

oz2

�
Uj ¼ 0; j ¼ 1; 2; 3; ðA:2Þ
where m3 ¼ 2C44=ðC11 � C12Þ whereas m1 and m2 are roots of the equation
C11C44m
2 � ½ðC44Þ2 � C11C33 � ðC13 þ C44Þ2�mþ C33C44 ¼ 0: ðA:3Þ
In (A.1), k1 and k2 are given by the expressions
kj ¼
C11mj � C44

C13 þ C44

¼ mjðC13 þ C44Þ
C33 � mjC44

; j ¼ 1; 2: ðA:4Þ
In the case m1 6¼ m2, representation (A.1) is general.

We introduce new spatial coordinates xj ¼ x, yj ¼ y, zj ¼ z=
ffiffiffiffi
mj

p
to rewrite (A.2) as
o2

ox2j

 
þ o2

oy2j
þ o2

oz2j

!
Uj ¼ 0: ðA:5Þ
The sets of singular and regular solutions are given by (A.1), with the potential functions
UðjÞ
ts ¼ 1

ð2t þ 1Þ F s
tþ1ðrj; djÞ

�
� F s

t�1ðrj; djÞ
	
;

/ðjÞ
ts ¼ 1

ð2t þ 1Þ f s
tþ1ðrj; djÞ

�
þ f s

t�1ðrj; djÞ
	
; t ¼ 0; 1; 2; . . . ; jsj6 t þ 1;

ðA:6Þ
where
F s
t ðr; dÞ ¼

ðt � sÞ!
ðt þ sÞ!Q

s
t ðnÞP s

t ðgÞ expðisuÞ;

f s
t ðr; dÞ ¼

ðt � sÞ!
ðt þ sÞ! P

s
t ðnÞP s

t ðgÞ expðisuÞ
ðA:7Þ
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are the singular and regular, respectively, harmonic functions obtained by separation of variables in the

Laplace equation written in the spheroidal coordinates (Hobson, 1931), P s
t and Qs

t are the associated

Legendre functions of the first and second kind, respectively. In (A.6), ðnj; gj;ujÞ are given for mj < 1 by the

modified prolate spheroidal coordinates
xþ iy ¼ dj �nnj�ggj expðiujÞ; z ¼ ffiffiffiffi
mj

p
zj ¼

ffiffiffiffi
mj

p
djnjgj;

�nnj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnjÞ2 � 1

q
; �ggj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðgjÞ

2
q

:
ðA:8Þ
In the case mj > 1, one has to use the oblate spheroidal coordinates instead of prolate ones.

Note that, according to Hobson (1931), F s
t ¼ f s

t � 0 for jsj > t; this condition, however, makes it im-

possible to represent some of the singular solutions in the form (A.1) and (A.6). To resolve for this diffi-

culty, we exploit the Podil�chuk�s (1984) idea and introduced the following, additional to (A.7), functions of

the form
F tþk
t ðr; dÞ ¼ 1

ð2t þ kÞ!Q
tþk
t ðnÞP tþk

t ðgÞ exp½iðt þ kÞu�; k ¼ 1; 2; . . . ; ðA:9Þ
where
P tþk
t ðpÞ ¼ ð2t þ kÞ!

ð1� p2ÞðtþkÞ=2

Z 1

p

Z 1

p
� � �
Z 1

p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
tþk

PtðpÞðdpÞtþk ¼ ð2t þ kÞ!
ð1� p2ÞðtþkÞ=2 Itþk
for 06 p6 1; for p < 0, P tþk
t ðpÞ ¼ ð�1ÞkP tþk

t ð�pÞ. For the explicit expressions of Itþk, see Kushch (2004). It

is fairly straightforward to show that the functions (A.9) are the singular solutions of the Laplace equations

but, unlike (A.7), they are discontinuous at z ¼ 0. In the general series solution, however, these breaks

cancel each other and give the continuous and differentiable expressions of the displacement and stress

fields.

In (A.6), parameters of the modified spheroidal coordinate system (A.8) are chosen in a way that

nj ¼ nj0 ¼ const at the surface r ¼ R; i.e., S is the n-coordinate surface in each coordinate system introduced

by (A.8). We provide this by defining
dj ¼ R=nj0; nj0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mj=jmj � 1j

q
:

In this case, moreover, we have gj ¼ h and uj ¼ u for r ¼ R, where ðr; h;uÞ are the ordinary spherical

coordinates corresponding to the Cartesian ones ðx; y; zÞ. This is the key point: no matter how complicated

is solution in the bulk, at the interface we get the linear combination of regular spherical harmonics

Y s
t ðh;uÞ ¼ P s

t ðcos hÞ expðisuÞ. Under this circumstance, satisfaction the contact conditions at interface is the

nothing more than standard algebra. To get the explicit expressions of the vectorial functions introduced,

we substitute UðjÞ
ts (A.6) into (A.1) and utilize the properties of the functions (A.7)
d

ð2t þ 1Þ
o

ox

�
� i

o

oy

�
F s
tþ1ðr; dÞ

�
þ F s

t�1ðr; dÞ
	
¼ F s�1

t ðr; dÞ;

d

ð2t þ 1Þ
o

ox

�
þ i

o

oy

�
F s
tþ1ðr; dÞ

�
þ F s

t�1ðr; dÞ
	
¼ �F sþ1

t ðr; dÞ;

d

ð2t þ 1Þ
o

oz
F s
tþ1ðr; dÞ

�
þ F s

t�1ðr; dÞ
	
¼ F s

t ðr; dÞ:

ðA:10Þ
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It gives us the following set of singular vectorial solutions:
FðjÞ
ts ðrÞ ¼ F s�1

t ðrj; djÞe1 � F sþ1
t ðrj; djÞe2 þ

kjffiffiffiffi
mj

p F s
t ðrj; djÞe3; j ¼ 1; 2;

Fð3Þ
ts ðrÞ ¼ F s�1

t ðr3; d3Þe1 þ F sþ1
t ðr3; d3Þe2; t ¼ 0; 1; 2; . . . ; jsj6 t þ 1;

ðA:11Þ
where the complex Cartesian basis vectors are e1 ¼ ðex þ ieyÞ=2; e2 ¼ ðex � ieyÞ=2 and e3 ¼ ez.

At the spherical surface r ¼ R, the functions FðjÞ
ts ðrÞ take the form
FðjÞ
ts ðrÞjS ¼ Qs�1

t ðnj0Þvs�1
t e1 � Qsþ1

t ðnj0Þvsþ1
t e2 þ

kjffiffiffiffi
mj

p Qs
t ðnj0Þvste3; j ¼ 1; 2;

Fð3Þ
ts ðrÞjS ¼ Qs�1

t ðn30Þvs�1
t e1 þ Qsþ1

t ðn30Þvsþ1
t e2; t ¼ 0; 1; 2; . . . ; jsj6 t þ 1;

ðA:12Þ
where vst ¼
ðt�sÞ!
ðtþsÞ! Y

s
t ðh;uÞ; the representation (A.12) is suitable for satisfying the interfacial boundary con-

ditions (2) for displacements.

To satisfy the stress boundary conditions, we need similar expression of the traction vector Tn ¼ r � n.
After somewhat involved algebra, we obtain the following representation of TnðFðjÞ

ts Þ at the surface S:
dj
C44

TnðFðjÞ
ts ÞjS ¼

1ffiffiffiffi
mj

p ðk1
�

þ 1ÞQ0s�1
t ðnj0Þ �

ðs� 1Þ
nj0

mjC12 � kjC13

mjC44

Qs�1
t ðnj0Þ

�
vs�1
t e1

� 1ffiffiffiffi
mj

p ðk1
�

þ 1ÞQ0sþ1
t ðnj0Þ þ

ðsþ 1Þ
nj0

mjC12 � kjC13

mjC44

Qsþ1
t ðnj0Þ

�
vsþ1
t e2

þ ðk1 þ 1ÞQ0s
t ðnj0Þvste3; j ¼ 1; 2; ðA:13Þ

d3
C44

TnðFð3Þ
ts ÞjS ¼

1ffiffiffiffi
m3

p Q0s�1
t ðn30Þ

"
þ ðs� 1Þ n30

ðn30Þ2
Qs�1

t ðn30Þ
#
vs�1
t e1

þ 1ffiffiffiffi
m3

p Q0sþ1
t ðn30Þ

"
� ðsþ 1Þ n30

ðn30Þ2
Qsþ1

t ðn30Þ
#
vsþ1
t e2 þ

1ffiffiffiffi
m3

p
s

n30
Qs

t ðn30Þvste3:
The results exposed above imply m1 6¼ m2. When m1 ¼ m2, solution (A.1) is not general because of Fð1Þ
ts � Fð2Þ

ts .

In this case, however, the general solution of r � r ¼ 0 can be represented as
ux ¼
oU1

ox
þ z

oW
ox

þ oU3

oy
; uy ¼

oU1

oy
þ z

oW
oy

� oU3

ox
; uz ¼

oU1

oz
þ z

oW
oz

� C13 þ 3C44

C13 þ C44

W ðA:14Þ
or, in the vectorial form,
u ¼ rU1 þr� ðU3ezÞ þ zr
�

� C13 þ 3C44

C13 þ C44

ez

�
W; ðA:15Þ
where the potential function W satisfies Eq. (A.2) with m ¼ m1. To get the complete set of independent

solutions (A.11), one can take Fð2Þ
ts in the form
Fð2Þ
ts ðrÞ ¼ d1 zr

�
� C13 þ 3C44

C13 þ C44

ez

�
F s
t ðr1; d1Þ þ

ffiffiffiffi
m1

p
d1ðn10Þ2rF s

t�1ðr1; d1Þ: ðA:16Þ
With the last term added, expression of Fð2Þ
ts at the surface r ¼ R is rather simple:
Fð2Þ
ts ðrÞjS ¼

ffiffiffiffi
m1

p n10
ðt þ sÞQ

s�1
t�1ðn10Þvs�1

t e1 �
ffiffiffiffi
m1

p n10
ðt þ sþ 2ÞQ

sþ1
t�1ðn10Þvsþ1

t e2

þ n10
ðt þ sþ 1ÞQ

s
t�1ðn10Þ

�
� C13 þ 3C44

C13 þ C44

Qs
t ðn10Þ

�
vste3: ðA:17Þ
For the expression of the corresponding traction vector, see Podil�chuk (1984).
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The explicit form of the regular solutions fðjÞts is given by Eq. (A.11) with the replace F s
t to f s

t . To get the

expression of fðjÞts and TnðfðjÞts Þ at the interface, one has to substitute Qs
t ðnÞ by Ps

t ðnÞ in (A.12) and (A.13),

respectively.
Appendix B. Evaluation of the triple lattice sums

The triply periodic solutions bFFts of the Laplace equation entering the expression of FðjÞ
ts are
bFFtsðr; dÞ ¼

X
k

F s
t ðrþ Rk; dÞ; ðB:1Þ
where Rk ¼ aðk1ex þ k2ey þ k3ezÞ, a being the cubic lattice period, and summation is made over all the in-

teger k1, k2 and k3. Theory and application of the functions (B.1) for jsj6 t is given elsewhere (Kushch,
1997a); below, we outline briefly an idea of the summation technique and give the necessary formulae.

Obtaining the local expansion of the periodic functions bFFts is based on the re-expansion formulae for the

singular solid spheroidal harmonics F s
t (Kushch, 1997a) written in our case d1 ¼ d2 ¼ d as
F s
t ðrþ R; dÞ ¼

X1
k¼0

X
jlj6 k

gðs�lÞ
tk ðR; dÞf l

k ðr; dÞ; ðB:2Þ
where the general expression of gstk is
gstkðR; dÞ ¼ gð1Þtks ¼ ð�1Þkþs
X1
r¼0

NtkrðdÞF s
tþkþ2rðR; 2dÞ; ðB:3Þ

Ntkr ¼
ffiffiffi
p

p
ðk þ 1=2Þd2rþtþkþ1ðt þ k þ 2r þ 1=2Þ �

Xr
j¼0

ð�1Þj

ðr � jÞ!
1

2

� �2jþtþkþ1

Cðt þ k þ r þ jþ 1=2ÞMtkj

ðB:4Þ
and
Mtkj ¼
ðt þ k þ jþ 2Þj

j!Cðt þ jþ 3=2ÞCðk þ jþ 3=2Þ : ðB:5Þ
Here, CðzÞ is the Gamma-function and ðnÞm is the Pochhammer�s symbol.

In the case of well-separated inclusions, namely for kRk > 2d, expression of gstk can be simplified to
gstkðR; dÞ ¼ gð2Þtks ¼ ð�1Þkþs
X1
r¼0

LtkrðdÞSs
tþkþ2rðRÞ; ðB:6Þ
where the functions
Ss
t ðrÞ ¼

ðt � sÞ!
rtþ1

Y s
t ðh;uÞ; and sst ðrÞ ¼

rt

ðt þ sÞ! Y
s
t ðh;uÞ ðB:7Þ
are the singular and regular, respectively, solid spherical harmonics and
Ltkr ¼ pðk þ 1=2Þðd=2Þ2rþtþkþ1Mtkr: ðB:8Þ
In practice, this simplified formula provides an efficient calculation of gstk for kRkJ 2:5d, where the con-

vergence rate of the series (B.6) becomes sufficiently high. Noteworthy, all the above formulae remain valid
for the extended set of spheroidal harmonics given by (A.9) provided we define
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Stþk
t ðrÞ ¼ 1

rtþ1
P tþk
t ðcos hÞ exp½iðt þ kÞu�: ðB:9Þ
Now, we apply (B.2) to all the terms of the sum (B.1) but one with k ¼ 0 to obtain, after change of

summation order, a local expansion of bFFts in the vicinity of the point R ¼ 0:
bFFtsðr; dÞ ¼ F s
t ðr; dÞ þ

X1
k¼0

X
jlj6 k

ĝgtk;s�lð0; dÞf l
k ðr; dÞ; ðB:10Þ
where the expansion coefficients are the triple infinite (lattice) sums
ĝgktsðR; dÞ ¼
X
k 6¼0

gsktðRþ Rk; dÞ: ðB:11Þ
In the vicinity of the point r ¼ R 6¼ 0, the local expansion takes the form
bFFtsðr; dÞ ¼
X1
k¼0

X
jlj6 k

bggtk;s�lðR; dÞf l
k ðr; dÞ; ðB:12Þ
in this case, the term with k ¼ 0 is present in the sum (B.11) as well.
Evaluation of the sums (B.11) is the most difficult and time-consuming part of numerical algorithm. We

make use advantage of possessing two representations of gstk to rewrite it in a suitable for computational

purpose form:
ĝgtksðR; dÞ ¼
X

krþRkk6 2:5d

gð1Þtks ðR
h

þ Rk; dÞ � gð2Þtks ðRþ Rk; dÞ
i
þ ĝgð2Þtks ðR; dÞ; ðB:13Þ
where
ĝgð2Þtks ðR; dÞ ¼
X1
r¼0

Ltkr
bSStþkþ2r;sðRÞ ðB:14Þ
and
 bSStsðRÞ ¼
X
k

Ss
t ðRþ RkÞ: ðB:15Þ
The first term in (B.13) is a finite sum and, thus, the only remaining problem is evaluation of the lattice

sums bSSts. For jsj6 t, the efficient algorithms of fast summation are well developed now (e.g. Zinchenko,

1994). An attempt to extend the Evald�s summation technique on the spherical harmonics with jsj > t
meets, however, certain mathematical difficulties. Therefore, we shall apply here an alternate method of

summation based on using of double Fourier series. This method, used systematically by Golovchan et al.
(1993), is somewhat more involved but provides rather simple and efficient numerical realization. What is

important here, it works equally well for the sums (B.15) with jsj > t.
The summation technique is briefly shown below where we put, for simplicity sake, R ¼ 0. Taking into

account that bSSts are absolutely convergent for tP 2, we decompose them into a sum of two parts:
bSStsð0Þ ¼ bSS ð1Þ
ts ð0Þ þ bSS ð2Þ

ts ð0Þ ¼
X
k1;k2
ðk3¼0Þ

0BB@ þ
X
k

ðk3 6¼0Þ

1CCASs
t ðRkÞ: ðB:16Þ
The first term bSS ð1Þ
ts is a double series: to evaluate it, either the direct summation or, for the lower values of t,

the fast summation technique described by Golovchan et al. (1993) can be applied. To find bSS ð2Þ
ts , we rewrite

it as
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bSS ð2Þ
ts ð0Þ ¼

X
k3 6¼0

bSS ð1Þ
ts ðak3ezÞ: ðB:17Þ
In the half-spaces z70, bSS ð1Þ
ts is the regular double-periodic function and, thus, allows representation by the

double Fourier series
bSS ð1Þ
ts ðrÞ ¼

X
m;n

ð�1Þtþsftsmn exp½�dmnjzj þ iðamxþ anyÞ�; z70; ðB:18Þ
where
am ¼ 2pm
a

; ðdmnÞ2 ¼ ðamÞ2 þ ðanÞ2 and ftsmn ¼
2p
a2

ðdmnÞt�s�1ðan � iamÞs: ðB:19Þ
By combining (B.17) and (B.18) one obtains, after some algebra, the rapidly convergent series
bSS ð2Þ
ts ð0Þ ¼ ½1þ ð�1Þtþs�

X
m;n

ftsmn½expðdmnaÞ � 1��1
: ðB:20Þ
The formulae (B.16)–(B.20) are valid for jsj6 t þ 2 and thus can be used alone or as a supplement to the
Evald�s technique to evaluate the sums (B.15) and thus ĝgkts (B.11), entering the matrix of the resolving set of

Eqs. (29).
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