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Abstract

The unit cell approach has been applied to study the effective elastic properties of a matrix type particulate composite
with transversely isotropic phases. The microgeometry of composite is modeled by a periodic structure with a unit cell
containing a certain number of arbitrarily placed and oriented spherical inclusions. The analytical, multipole expansion
based method of solution has been developed reducing the complicated primary periodic boundary-value problem for a
3D multiple-connected domain to an ordinary set of linear algebraic equations and providing, thus, its high numerical
efficiency. By analytical averaging the strain and stress fields the exact formulae for the effective stiffness tensor have
been derived. The numerical results are given showing an efficiency and accuracy of the method and disclosing the way
and extent to which the elastic properties mismatch, anisotropy degree and particle phase arrangement and orientation
statistics influence macroscopic stiffness of composite.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In the present work, the effective elastic properties of a particulate composite with transversely isotropic
phases are evaluated using so-called “unit cell” approach. Its basic idea consists in modeling an actual
microgeometry of composite by idealized periodic structure with a unit cell containing from one to several
particles. Then, the homogenization boundary-value problem is to be stated and solved for the unit cell.
Sometimes, this model is referred also as the “lattice’” model reflecting the fact that the inclusions form a
spatially periodic array. The model is advantageous in that it provides a natural way, through the periodic
boundary conditions on the opposite cell facets, to take into account interactions among a whole infinite
array of inhomogeneities. Also, the deterministic (although rather complicated) geometry of unit cell
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enables an accurate solution of the corresponding periodic boundary-value problems. These features make
the unit cell approach to be appropriate for studying the high-filled strongly heterogeneous composites,
where the structure and interactions between the particles should be taken into account to a maximum
possible extent.

There is a number of papers where the unit cell approach has been applied to study the elastic pro-
perties of particulate composites with isotropic constituents. A periodic composite with the cubic lattice of
rigid spherical particles was studied by Nunan and Keller (1984) by the method of singular integral
equations. For a composite with elastic inclusions, an accurate solution has been obtained by Kushch
(1987) and Sangani and Lu (1987) who used the multipole expansion method. For the composites with
more general ellipsoidal shape of particles an approximate solution for the effective moduli has been
obtained by Iwakuma and Nemat-Nasser (1983). Sangani and Mo (1997) and Kushch (1997b) considered
more realistic structural model of composite with spheroidal inclusions and developed an accurate ana-
lytical, multipole expansion-based method of solution. Nemat-Nasser et al. (1993) and Kushch and
Sangani (2000) applied the unit cell approach to evaluate elastic stiffness of the solids containing penny-
shaped cracks.

Unlike the isotropic case, a few results can be found in literature relating the particulate composites with
anisotropic phases. The most work done up to date in this area is based on the Green’s function (point body
force solution) for an infinite solid. Mura (1982) has derived the implicit Eshelby’s type solution for a single
inclusion in an anisotropic medium. Withers (1989) has obtained the Eshelby’s tensor for an ellipsoi-
dal inhomogeneity embedded in a transversely isotropic matrix. The exact variational bounds and self-
consistent estimates for the scalar properties of anisotropic composites have been found in Willis (1977).
Sevostianov et al. (2004) has derived expressions for components of the stiffness/compliance contribution
tensors of a spheroidal inclusion embedded in a transversely isotropic matrix. They used the effective field
method of Kanaun and Levin (1994) to calculate effective elastic properties of a composite with transversely
isotropic phases. We also have to mention several papers addressing composite materials with transversely
isotropic piezoelectric phases. Elastic properties can be obtained from these results as a particular case. So,
in the method of conditional moments developed by Khoroshun et al. (1989), the one-point correlation of
random stress and strain fields were retained in the solution. Various methods of averaging are discussed
and detailed literature review is given by Sevostianov et al. (2001).

Noteworthy, in all the mentioned works the one-particle approximation based on the solution of the
Eshelby problem is used. The structure parameters one can take into account in this model are shape of
inclusions and volume content of disperse phase. Hence, one can expect it to work well for the composites
with low and moderate volume content of disperse phase. The Willis (1975) paper is possibly the only work
where the model with more that one inhomogeneity in an anisotropic elastic solid was considered. There,
the problem for two interacting spherical voids was formulated in terms of integral equation for the
transformation stress in equivalent homogeneous inclusion and, using the iterative perturbation technique,
an explicit approximate solution has been obtained for polynomials up to second degree. The available by
now applications of the unit cell model (e.g. Rodriguez-Ramos et al., 2001) are confined to the fiber re-
inforced composites. To the best knowledge of authors, this approach never been applied to the particulate
composites with anisotropic constituents.

Recently, Kushch (2004) has extended the multipole expansion method on the transversely isotropic
elasticity and obtained an accurate series solution for a solid containing a finite array of arbitrarily placed
and oriented spherical inclusions. In the present paper, this method is further developed and combined with
the unit cell model to evaluate the effective elastic properties of particulate composite with transversely
isotropic phases. To expose a basic technique of the method, the simple periodic model is considered first.
Then, an accurate solution for the generalized periodic structure is obtained. The finite exact expression of
the effective elastic stiffness tensor is derived by analytical averaging of the strain and stress fields. The
numerical results are presented and discussed in Section 6.
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2. The problem statement

In the Cartesian coordinate system O,,, with O, axis aligned with the anisotropy axis of transversely
isotropic elastic material, the generalized Hook’s law ¢ = C - -¢ has the form

Oy = Cllgx + C123y + C13Sz; Tz = 2C448xz7
o, = Cpé, + Cpiey + Cize;, T, = 2C448,;, (1)
0. = Ci3& + Cize, + Cs3e, Ty = (C11 — C12) ey

Here, two-indices notation C; = Cy;; is accepted for components of the fourth rank stiffness tensor C. The
components of the stress tensor o satisfy the elastic equilibrium equations V - ¢ = 0 and the small strain
tensor ¢ is related to the displacement vector u by & =1 [Vu + (Vu)'].

We consider two-phase composite material consisting of a continuous phase (matrix) with embedded
spherical inclusions of radius R. The matrix and inclusions are assumed to be eclastic and transversely
isotropic and perfectly bonded:

(" —u)lg=0, (T -T))s=0, )

where T = ¢ - n the normal traction vector and n is the outer normal unit vector at the surface S. Here and
below, all the parameters associated with the matrix and inclusion are denoted by the superscript “-"" and
“+”, respectively: C = C~ in the matrix and C = C" in the inclusions. We do not assume the anisotropy
axes of the matrix and inclusion materials to be aligned and introduce the material-related Cartesian co-
ordinate systems Oy-,.- and Oi+,+.+ with common origin in the center of inclusion. The coordinates of a
point and the vector components in these coordinate bases are related by

XL=Qpx,u = Quuy, 3)
where Q is the rotation matrix: QT = Q' and detQ = 1.

We assign the macroscopic strain tensor

E:<a>:%/[/adV (4)

to be a governing parameter of the problem, ¥ being a representative volume of composite. Alternatively,
the loading parameter can be taken in the form of macroscopic stress tensor, S = (6) =+ [ [ [,6dV. We
consider macroscopically homogeneous stress state of composite assuming both the E and S to be constant.
Due to linearity of the problem, the relationship between these tensors can be written in the form

(6) = C*(g), (5
where C” is the macroscopic, or “effective”, stiffness tensor of a composite. The main objective of this paper
is to determine the tensor C* of a particulate composite with transversely isotropic phases. It will be ac-

complished by solving a series of the model problems: namely, C;;, = {(g;;) provided that components of the
macroscopic strain tensor are given by (&,,) = 0,x0,, Where 9;; is the Kronecker’s delta.

3. Unit cell model
3.1. Simple cubic lattice of inclusions

To expose the basic technique of the method, we consider first the simplest periodic model of particulate
composite consisting of a continuous matrix with a periodic array of equal spherical inclusions of radius R
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embedded. The centers of particles lie in the nodes of simple cubic (SC) lattice. Geometry of this model is
defined either by the distance a between the neighbouring particles or, alternatively, by the volume content
of dispersed phase ¢ = %n(R/a)3. To solve for this model accurately, we shall follow the approach deve-
loped by Kushch (1997b) and decompose the displacement vector u~ in the matrix domain into a sum of
linear part Uy = E - r~ and periodic disturbance U; produced by the inhomogeneities. It follows from (32)
that u= = Up + U; comply the condition (4).

The disturbance displacement field U, is a periodic function of spatial coordinates and, hence, can be
expanded into a series over the triply periodic solutions FU of the equilibrium equations. Their explicit
form is given by (A.11), where the functions F’ (A.7) are replaced by their perlodlc counterparts, F, (B.1).
The lattice nodes are the singularity points of these functions and, thus, F can be thought as the periodic
singular solution. Thus, we have

i > 3 agE (6)

=1 |s|<r+1

where Ag) are the unknown series expansion coefficients.
On the contrary, the displacement field u* within an inclusion has no singularity and hence its series
expansion contains the regular solutions /) only:

o0

3
:ZZ > DIt (). (7)

|s] <r+1

Here, D,@ as well as A,%’ in (6) are the unknown constants which are to be chosen so that to satlsfy the
interface boundary conditions (2). To obtain a resolvmg set of equations for the unknowns A,b and D,é , We
utilize the representation (A.12) of the functions F and f on the surface » = R, rewritten in the compact
form as

3
F |s = Z UGL1/'e;, fﬁms = Z UM} 7/'e;, (8)
Jj=
where
O (&) O7'(&)  O7(éx)
UG, = {UG!} = | 0" () —0/"' () O7'(&0) |,

O EOE) 0

PN (&) P'(&n)  PM(E)

UM”:{UA/[;{}: _PzSH@lO) _Esﬂ(fzo) stﬂ(éw)
LP(&) PGy 0

and e; are the complex Cartesian vectors defined in Appendix A; s;=s—1, s; =s+1 and s3 =s.
Substituting (8) into (7) gives us

S S Soomnn 0o g
i=l =0 |s|]<r+1 =1

To obtain the local expansion of u™ (6) in the form analogous to (9) we note that the regular part U, can be
written as a linear combination of the functions f 1’” whose Cartesian components are the polynomials of
first order. After some algebra, we get
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3 00
=0 > el (10)
J=1 =0 [s]<t+1
where
ely) = v [Es3vy +ky (En + Ex)]
kivy — kv 2 2
dr /vy
ef) = —el, lk, (B — iEx)
1
el = egl,)fz = (En — Ex — 2iE)y), (11)
@ vy dy
=——== |F k E E
=T — kg 1[3%V1+ (Evi + Ex)),

\/V3dy .
el =ei) = kS_ (1 — &y ) (Exs — iEx),
1
all other coeflicients eﬁ? are equal to zero. For the definiteness sake, we assume here and below v; # v,; in
the case of equal roots v; and v, of Eq. (A.3), one has to use f;sz) and FESZ) in the form (A.16) rather than
(A.11) in (6)—(10) and all the subsequent formulae.

Expansion of the periodic part U, utilizes the formula
F{)(r.d) = 143 (0.4 ) (12)
k=0 |I| <k+1

following directly from the corresponding formula for scalar harmonics (B.10). Combining (6) with (12)
and (8), we come to

3 00 3
=YD S Do uGrAY + UM (@) + e |1 (07, 07 )e; (13)
a=1

J=1 =0 |/|<t+1

where
=> ia-5(0, d; )45 (14)
=0 |/ <k+1

and ﬁkf *) are the triple infinite (lattice) sums given by (B.11) (Appendix B).

The local expansions of u~ (13) and ut (9) are still written in the differently oriented coordinate bases.
Therefore, before substituting them into (2), u™ has to be expressed in terms of the variables 0, ¢~ and
vectors e; . To this end, we apply the formula derived by Bateman and Erdelyi (1953):

267 00 = 3 YD gty 67 o), (15)

= (t+s)!

where S5/ are the spherical harmonics in four-dimensional space and w is the vector of Euler’s parameters
related to the rotation matrix Q by

wh—wi—wi 4wl 2(wawz — wiwy) 2(wywa + wiwy)
Q= 2(waws +wiwg) Wi —wi—wi+wi  2(wiws —wows) |- (16)

2(wiwy — wawy) 2(wiwy — wawg) Wi — w3 — w3 +wj
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Transformation of the vectors e; uses the formula

=Q%, where Q@ =D'QD and D= | —i

11/7

Applying (15) and (17) to (9) gives

ohy ) s P
ZZ Z Z ij Z ll‘:::S,' étlrl ZU 13HLD X;’(G , @ )ei' (18)

j=1 =0 |l|<t+1 [ i=1 |\<z+1

Now, we substitute u™ (13) and transformed expression of u* (18) into the first of conditions (2) and exploit
the orthogonality property of spherical harmonics y; on the surface S to decompose the vectorial functional
equality u™ = u™ into a set of linear algebraic equations. In matrix notation, it can be written as

UG;A[['FUM at1+etl Z UMIS[ tsy t:071727"'7 |l|<t+17 (19)

ls] <141

where

) D)
Wt?lUMtw W' = *( + .1) gl i’

UM, sl — FFij (t—|—s-)! 2t (W)7

sl T

Ay =y A0 40" and ay = (@) a)a))",

tl o™

the vectors D, and e, are of the same structure.

Obtaining the second set of equations follows the same way with only difference that, instead of (A.12),
the representation (A.13) of the normal traction vectors T,(fY)) and T,(f")) on the surface » = R is to be
utilized. After transformations, we obtain

TG, - Ay +TM, - (a;+e) = Y TM,, -

tsl
|s| <t+1

DI‘S7 (21)

where TM, = W,,TM. Form of the matrices TG, and TM,, is clear form (A.13). Egs. (19) and (21)
together form a complete set of linear equations from where A,S and Dm can be determined. An attempt to
solve this linear system discovers, however that its determinant is equal to zero The reason 1s that, for a
given ¢, some of the functions f'”) at |s| > ¢ are linearly dependent: e.g., f; "~ m+1 and f; IR ft 1 Really,
we have 3(2¢ 4 3) vectorial solutlons of order ¢ 1ntroduced whereas the number of independent functions is
equal to 3(2¢ + 1) (remind, the Cartesian components of f are the polynomials of order ¢ (A.11) and f; =0
for |s| > ¢). Due to the same reason not all the eb are represented in (11). Adding six additional constraints

Eit =0, Dti i1 =0 and Dti 1) = 0 to (19) and (21) gives, finally, a well-posed set of linear equations
possessing an unique solution.

3.2. Generalized periodic structure model

Let us consider now a composite of periodic structure with a unit cell of cubic form containing N non-
touching equal-sized spherical particles with the centers located in the points O,, ¢ =1,2,...,N. We in-
troduce the local material-related coordinate systems Otyizr which origin and or1entat1on W1th respect to
the global Cartesian coordinate system O, .- is defined’ by ‘the vector R, and the rotation matrix €,. The

matrix-inclusion interface conditions, consistent with (2), are

(uy —u)f;, =0, (Ta(w)) —Ta(u))[, =0, ¢=12,...,N. (22)
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In (22), u; is the displacement vector in the volume of gth inclusion which, by analogy with (7) can be
written as

w=33 3 DY), (23)

J=1 =0 |s|<t+1

To construct solution for a multiply connected matrix domain, we shall follow the procedure described by
Kushch (1997b). According to the superposition principle, the displacement vector u~ can be written as a
sum of linear far field and the disturbance fields induced by each separate inclusion:

N
u=E-r + ZUP(rP)’ r,=r —R,. (24)
=1
By analogy with (6), each singular term U, allows series expansion of the form

S Y APVRY), (25)

J=1 =0 |s|<t+1

where A,(f )0 as well as Dﬁf)(’) in (23) are the series expansion coefficients to be found from the boundary

conditions (22).

Note that the separate terms of the sum in (25) are written in the different coordinate systems. To enable
application the procedure described in the previous section, we need first to express u~ in the variables of
the local, say gth, coordinate system. Such a transform for p # ¢ is based on using the re-expansion for-
mulae for the singular vectorial solutions Fg) due to translation of the coordinate system origin:

~

Ft<s Z Z ntks l pq: /)f/(c//)(rq_)v t:Oala2a~-'7 |S|<t+17 (26)
=0 |I|<k+1

following directly from the corresponding result for the scalar harmonic functions F (B.2). We apply (26)

to all the sum terms in (25) but that one with p = ¢ which requires (12) to be applied. After some algebra,

we find

3 00
D=3 S S (AR + @+ )] @)
J=1 =0 |s|<t+1
where
00 N
= Z ktl s pqa / Al(f[[’ (28)
k=0 |l|<k+1 p=1
and €Y are the expansion coefficients of the linear part of (24) given by the formula (10).

After the local expansion of u™ in the vicinity of the point O, is found, the remaining part of solving
procedure follows the way described in the Section 3.1. The resolVing set of linear algebraic equations is

UG AP + UM - (af +ef) = > M- DY,
[s| <t+1

TG - A + TV - (af +ef)= > TM" - DY, (29)
|s| <t+1

g=12,.. N, t=0,1,2,..., |[|<t+1,
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A\T .
where a® = (ag)(z) 490 400" gnd g0

are given by (28). Its approximate solution can be obtained by
the truncation method, when the unknowns and equations with ¢ < ¢, only are retained in the (29). The
solution is convergent for #,,x — oo provided that the non touchmg conditions ||R,,|| > 2R are satisfied for
each pair of inclusions. Thus, we can solve (29) for A and D with any desirable accuracy by taking #,,,«
sufficiently large. It is seen form the Table 1 in the Sectlon 5 thdt the convergence rate is sufficiently high for
a whole range of the problem parameters excluding only the nearly touching rigid inclusions. An asymp-
totic analysis of this extreme case, however, is beyond the scope of this paper.

4. Effective stiffness tensor

The macroscopic, or effective, elastic stiffness tensor is defined by Eq. (5) where, due to periodicity of
structure, the unit cell can be taken as a representative volume element of periodic composite. For such a
composite, integration of the strain and stress fields corresponding to the displacement vector (23), (24) can
be carried out analytically. As it was mentioned already, the components of the effective stiffness tensor can
be found as Cj;, = (g;;), where the stress ¢ is calculated for (ey) =1, (evr) = 0(k # k', [ # I'). First, we
apply the Gauss’ theorem to calculate the average strain:

- [ fur S | oo
//u nj+u;n;)dS + 5 Z// nj+(u§-")+—uj‘)n,} ds, (30)

where ¥, is domain occupied by gth inclusion, V =V 4+ Z -1V, and 2 is the unit cell boundary. Taking
the first of interface conditions (2) and periodicity of solution (24) into account, we get easily

1 _ _
<8ij> :ﬁ//(ul nj—l—uj l’l,')dS:E‘,*j7 (31)
P
i.e. E has a meaning of the macroscopic strain tensor, in accordance with (4). Thus,
Cin = 0 g =s,u0,° (32)

To compute the average stress, we make use of the identity ¢;; = aa (x;04) and the Gauss’ theorem to obtain

V<a,:,ﬂ>:///ai/dV+i///aijdV://aiknkx,dS—&—Z// o nk—aknk)xde (33)

Table 1

Convergence rate of the effective stiffness C3; of composite with SC lattice of inclusions with #,,, increased, 4 = 5
fmax c=0.1 c=03 c=0.5

A=0 A=o00 A=0 A=o00 A=0 A=00

1 8.274 12.41 5.664 19.60 3.614 32.84
3 8.257 12.42 5.534 20.39 3.307 43.71
5 8.257 12.43 5.533 20.48 3.292 49.21
7 8.257 12.43 5.533 20.49 3.289 52.11
9 8.257 12.43 5.533 20.49 3.287 53.47
11 8.257 12.43 5.533 20.49 3.286 54.16
13 8.257 12.43 5.533 20.49 3.285 54.48

15 8.257 12.43 5.533 20.49 3.285 54.57
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According to (22), the traction vector T = ¢ - n is continuous through the spherical interface S, and, thus,

Vo) = //Ti_xde. (34)

It follows from the Betti’s reciprocal theorem that the equality

// — i// (T, w, — Tu, )dS =0, (35)

where T' = T(u'), is valid for any displacement vector u’ satisfying the governing equations. We take it in
the form u, = d;x;; it is straightforward to show that in this case

//Tk’u;(dS = //ai’,n,xjdz = V{ay). (36)
b b

On the other hand,

T = ity = 5C,00 (Oninj + OnOui)nitty (37)
comparison with (31) gives us
//T,le dx = Ctjm<8W>5ll + Czjt/<8if>(1 - 5if) (38)
and, thus,
1 N
<Gif> = Czjm<‘(’10€>5l] + Cljlj<&ij>(1 - 51:1') +I_/ Z//(T;M;{ - TZM;)dS (39)
g=1" ¢

The formula (39) is valid for an arbitrary orientation of inclusions and a general anisotropy type of phase
materials. To compute average stress from (39), one needs to integrate the matrix fields only; with the local
series expansions (13) and (27) taken into account, this task is rather trivial. Moreover, it follows from the
Betti’s theorem that for all the regular solutions f(’ these integrals are equal to zero. Among the singular
solutions FY), only those with ¢ = 1 contribute (g, > after some algebra, we get the exact explicit formulae:

w (L&)

(o11) = Cyylem) — 11(\/‘1‘110 + \/‘TJAQ)) 2 Nen Re;!%’;

(o22) = Carlon) — i (VAT + Vi) - 2 (1%_;() e}

(033) = Cy(em) — C3<k—1;l~%) +j—2;—2~%))7 (40)
(012) = Cyglenn) + % %Imﬁif;,

(o13) — i{o35) = Cra({ens) — ie2) + 2 [(1 + 26 )AL + (1 + 26)4% — AT,

where 41 = (d‘)Zﬁ Z;V:l A9,
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5. Numerical results

In this section, we present several numerical examples demonstrating numerical efficiency and accuracy
of the method developed and showing, at the same time, how the selected microstructure parameters in-
fluence the macroscopic elastic stiffness of a composite. Noteworthy, numerical algorithm of the method is
rather simple and consists in computing the triple sums (B.11) which enter the matrix elements of the in-
finite algebraic system (39) and then solving the truncated linear system by some standard method. The
typical number of unknowns retained in the resolving set of equations varies from tens to a several hun-
dreds depending on complexity of the problem being considered. This is a very moderate number in
comparison with the tens and hundreds of thousand equations in the 3D finite element analysis of similar
problems which proves the above algorithm to be highly efficient form the computational standpoint.

With the number of inclusions inside the unit cell increased the computational effort of triple sums (B.11)
evaluation grows as N? and, for N small, is the most time-consuming part of algorithm. However, for
N = 10, the proper choice of linear solver becomes important and, when the dimension of truncated system
exceeds 103, the iterative algorithms rather than the direct O(N?) methods should be applied. The recent
version of generalized minimum residual (GMRES) iterative solver by Fraysse et al. (1998) was found to be
quite appropriate for this purpose. With using the iterative solving procedure, the total computational time
scales as N? which enables carrying out the numerical simulations up to N = 30-40 on a regular PC. For a
larger number of inclusions, an additional effort should be applied to provide fast and efficient numerical
realization of the method. One straightforward way to do this is to incorporate the above solution into a
general scheme of the O(N) algorithm by Sangani and Mo (1995).

The problem considered has a number of parameters: they are five components of the matrix C, five
components of the matrix C*, three components of the position vector R, and three components of the
rotation matrix €, for each of N particles and six components of the macroscopic strain tensor, E. An
exhaustive parametric study of the problem is not a subject of the paper. Although no restrictions but the
particle-to-particle non-touching condition were imposed on the structure, phase properties and loading
type, in the subsequent numerical study we shall keep most of the parameters fixed and present the nu-
merical data giving a general idea how spatial arrangement and orientation of the particles and anisotropy
degree of phase materials affect the effective elastic stiffness of composite. Three particle arrangement types
considered in our numerical study are:

(a) simple cubic (SC) structure, N = 1;

(b) body-centered cubic (BCC) structure, which can be thought as a particular case of a generalized peri-
odic model with N =2 and Ry, = (a/2,a/2,a/2);

(¢) quasi-random (QR) structure, N = 16.

In all above cases, ¢ = 37N (R/a)’, where a is the lattice period.

To minimize number of the independent elastic constants, we put v/, = v, = 0.25, v{; = vj; = 0.25,
G; =1 and ET = 2.0. Here and below E;, G;; and v;; are the Young’s moduli, the shear moduli and the
Poisson’s ratios, respectively, related to C; by

Gio = Ce6 = (C11 — C12) /2, Gy = Gi3 = Cy,

1 cg3>‘ A
E=E, =2 ———+—= , Ey=—F——7-—,
1 : (Cll —-Ch A ’ (Cii + C2)

E, 1 Css
— vy = Cp3/(Cyy + C =S\ . A
Vi3 = Vn3 13/(Cii+Cn), vy 2 <C11 -Cn A )7
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where A = (Cy; + C12)Cs3 — 2(C13)2 and only five of these constants are independent. Two variable mate-
rial-related parameters are the matrix anisotropy degree 4 = E; /E and the inclusion-to-matrix stiffness
ratio, 1. Thus, we have E; = AE|, G|, = AGy;, E[ = AE| and E{ = AE;. Two extreme cases we focus our
attention on are 4 = 0 and 1 = oo, corresponding to the cavities and rigid particles. For the elastic inclusion
E/E[ = 4; i.e., we assume the inclusion’s anisotropy degree to be equal to that of the matrix material.

Remind that although the expressions for effective elastic moduli (32), (40) are finite and exact, the
complete solution is given by the infinite series (23)—(25). For computations, we retain in theoretical so-
lution a finite number of harmonics with ¢ < ¢,,,, only and, to estimate accuracy of the numerical results
obtained, one needs to learn about the convergence of truncated solution with #,,, increased. The data
presented in Table 1 show that, up to ¢ = 0.3 at least, value fy,x = 5 is sufficient to provide four-digit
accuracy. The convergence rate decreases significantly only in the extreme case of nearly touching rigid
inclusions. However, even for ¢ = 0.5, when the minimal distance between the surfaces of neighbouring
inclusions is as small as 1% of their radii, the value ¢,,, = 15 provides three-digit accuracy of the effective
moduli calculated. As it seen from the table, for a porous material (4 = 0) solution converges much more
rapidly: for a composite with elastic inclusions of finite stiffness, we can expect intermediate convergence
rate. Therefore, all the subsequent computations for composites of SC and BCC symmetry were performed
with #,.x = 15. However, for a composite with QR-array of inclusions the value #,,x = 7 was adopted in
order to reduce the computational effort. This choice was motivated by the fact that variation of the
computed values from one quasi-random structure realization to another exceeds greatly possible im-
provement in accuracy of solution by taking into account the higher harmonics.

In Table 2, the effective elastic properties of composite of SC structure are given as a function of volume
content of disperse phase. For ¢ =0, they are the equal to those of the matrix material: Cj, = 2.179;
Cy, =0.579; Cj; = 0.690; C3; = 10.344 and C;, = 1.0. Here and below, we put the anisotropy degree 4 = 5.
Analogous data for the composite of BCC structure are given in Table 3. It is clearly seen from these tables
that the arrangement type affects the macroscopic properties of high-filled composite dramatically: for
¢ = 0.5, C3; of composite with SC lattice of rigid particles more than two times exceeds Cj; of composite of
BCC structure. So wide difference is quite predictable because for a composite with rigid inclusions
Cj; — 0088 ¢ = Crmax, where cnax 1S @ volume content of dense packing of particles, equal to 0.52 for SC and
0.68 for BCC structure. Value ¢ = 0.5 is close to ¢y for SC array, resulting in much higher effective elastic
moduli as compared with BCC lattice. For a composite with weak inclusions or porous material, this effect
is less prominent because C* remains finite even for ¢ = cpay.

Note that although only five components of effective stiffness tensor are shown in Tables 2 and 3, the
periodic composite is not transversely isotropic on macro level even in the case of aligned anisotropy axes of
the matrix and inclusions. In the model considered, one of the lattice basis vectors is aligned with the
anisotropy axis of matrix material. Hence, one can expect the composite to be macroscopically orthotropic
and an additional anisotropy degree induced by the periodicity of microstructure can be estimated as the
ratio (Cj,; — C},)/2C¢, equal to 1 for a transversely isotropic material. It seen from Table 4 that anisotropy
is much stronger when the inclusions are arranged in the simple cubic array. On the other hand, the cavities

Table 2

Effective elastic properties of composite with SC lattice of cavities or rigid inclusions
¢ Chy Ch, Cis Ci Cis

=0 A=o00 A=0 A=o00 A=0 A=o00 A= A=00 A= A =00

0.1 1.810 2.716 0.464 0.685 0.552 0.827 8.257 12.43 0.811 1.213
0.2 1.508 3.464 0.366 0.786 0.428 0.957 6.785 15.60 0.638 1.458
0.3 1.243 4.552 0.282 0.874 0.322 1.078 5.533 20.48 0.488 1.783
0.4 0.996 6.375 0.208 0.942 0.232 1.185 4.400 29.03 0.359 2.296

0.5 0.749 11.73 0.140 0.990 0.152 1.267 3.286 54.57 0.243 3.694
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Table 3
Effective elastic properties of composite with BCC lattice of cavities or rigid inclusions
¢ Ci Ch Ch G Cu
=0 /=00 =0 A=00 =0 A=00 A=0 A=00 A=0 J=00
0.1 1.791 2.676 0.471 0.703 0.569 0.848 7.955 12.18 0.826 1.236
0.2 1.459 3.287 0.385 0.866 0.471 1.045 6.159 14.52 0.675 1.538
0.3 1.174 4.069 0.313 1.078 0.394 1.301 4.652 17.45 0.542 1.970
0.4 0.926 5.134 0.251 1.369 0.327 1.648 3.406 21.25 0.422 2.637
0.5 0.710 6.731 0.194 1.807 0.261 2.164 2.422 26.66 0.311 3.763
0.6 0.518 9.732 0.140 2.666 0.190 3.173 1.666 36.32 0.209 6.099
Table 4
Effective anisotropy degree (C;, — Cj,)/2C;, induced by the structure
c SC structure BCC structure
0.1 1.032 1.042 0.992 0.989
0.2 1.109 1.145 0.975 0.964
0.3 1.218 1.297 0.958 0.928
0.4 1.359 1.503 0.949 0.882
0.5 1.572 1.858 0.959 0.826

as well as the rigid particles can be thought as extreme case of isotropic inclusions: adding them to an-
isotropic matrix must change an effective anisotropy measured as a ratio of the effective Young’s moduli,
E}/E7. The relevant data given in Table 5 show that, with ¢ growing, an anisotropy is decreasing to a bigger
extent in the case of BCC packing of inclusions.

Now, we consider a periodic composite containing N = 16 particles randomly placed inside the unit cell.
We call this structure as quasi-random (QR): it was shown elsewhere (e.g. Sangani and Lu, 1987), that the
radial distribution function of such a structure is close to that predicted by the Percus—Yevick’s equation for
a perfectly disordered particulate composite. One can expect, therefore, the properties of our model to be
close to the properties of composite with random microstructure. To generate the model, the molecular
dynamics simulation algorithm similar to that described by Sangani and Lu (1987) was employed. Con-
figuration of the unit cell obtained by this way and hence the results of simulations vary from one run to
another and, to be statistically meaningful, they should be averaged over a certain number of runs. The
data given in the Table 6 were obtained by averaging over 30 realizations of QR structure: for all
the numbers presented there, the standard deviation is well below 3%. It is well-known fact that ¢y, of the
equal spheres random packing is about 0.63, close enough to the dense packing c¢.x = 0.68 of BCC lattice.
Comparison with the results obtained for the simple periodic structures (Tables 2 and 3) shows that the

Table 5

Effective anisotropy parameter, (E}/E;)/A
c SC structure BCC structure
0.1 0.957 0.957 0.933 0.957
0.2 0.939 0.933 0.855 0.928
0.3 0.925 0.923 0.829 0.901
0.4 0913 0.924 0.766 0.869

0.5 0.900 0.933 0.707 0.831
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Table 6

Effective elastic properties of a composite with QR lattice (N = 16) of cavities or rigid inclusions
¢ Cii Ch Ch G Ciu

=0 A=00 =0 /=00 =0 A=00 =0 A=00 A=0 A =00

0.1 1.80 2.71 0.47 0.70 0.57 0.85 7.77 12.2 0.83 1.26
0.2 1.46 3.42 0.38 0.86 0.47 1.06 5.74 14.7 0.67 1.62
0.3 1.16 4.43 0.30 1.07 0.39 1.33 4.27 18.0 0.53 2.13
0.4 0.90 5.72 0.24 1.37 0.32 1.69 2.94 23.0 0.41 291
0.5 0.69 7.33 0.19 1.77 0.26 2.15 2.18 29.3 0.31 4.04

values obtained for a QR structure lie between the corresponding data for the simple cubic and BCC
models and that BCC model is better approximation of disordered structure as compared with SC.
Noteworthy, the anisotropy parameter (Cj, — C},)/2C;, calculated for QR model is close (within 2-3%) to
1. This result agrees well with the fact that a random structure composite of transversely isotropic matrix
and rigid particles is transversely isotropic on macro level and we can consider it as another validation of
our model.

The normalized values of Cj, for three arrangement types considered by us are shown in Fig. 1. The
dotted vertical lines represent cp,, for each structure type (remind, ¢,y is equal to 0.52, 0.63 and 0.68 for
SC, QR and BCC structure, respectively) and are, at the same time, asymptotic lines for Cj; as ¢ — cCpax.
When the particles are nearly in contact with their neighbours, convergence rate of the series (23)-(25) is
rather slow and the number of harmonics one has to take into account to provide an accurate solution is
prohibitively large. This extreme case requires a separate consideration: in the isotropic case 4 = 1, the
asymptotic formulae for C}; at ¢ — cmax have been derived by Nunan and Keller (1984). An asymptotic
analysis of the problem is rather a subject of separate paper. However, our numerical study shows that the
value C3,/Cs, for a composite filled with rigid particles depends on 4 only marginally and it is believed that
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Fig. 1. Normalized modulus C;;/Cj; as a function of disperse phase volume content, c.
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the asymptotic analysis by Nunan and Keller (1984) with minor modifications can be applied to a com-
posite with transversely isotropic matrix.

In the above numerical analysis, the inclusions were assumed very hard or very soft as compared with the
matrix. In both cases, effect of inclusion orientation on the effective elastic response of composite is neg-
ligibly small. In fact, the interface conditions (2) reduce to T(u™)|; =0 for 2 =0 and u|; = 0 for 1 = oo,
effectively excluding inclusions from consideration. At finite 4, however, orientation of inclusions can in-
fluence the effective stiffness quite significantly. To estimate effect of orientation factor separately, we
consider a composite with 1 = 1: i.e., the inclusions are made from the same material as matrix does,
C*" = C . It can be thought, in particular, as a model of polycrystalline material with anisotropic grains.
For the anisotropy axes of matrix and inclusions aligned, we have a homogeneous material with no local
stress concentration and, hence, C* = C~ regardless on the volume fraction and arrangement type of
particles. At the same time, misalignment of the phase materials results in considerable interface stress
concentration (Kushch, 2003) and we can expect the effective moduli to be affected by rotation as well.

So, consider a periodic composite with simple (SC or BCC) lattice of inclusions (4 = 1) and restrict
rotation of inclusions to the xz-plane. In this case, their orientation is determined uniquely by the single
Euler’s parameter f being an angle between the O.- and O.+ axes. In Fig. 2, the normalized modulus C3,/Cy;
is given as a function of rotation angle f. Here, the solid lines represent C;, of composite with BCC
structure with volume fraction of inclusions equal to 0.1, 0.3 and 0.5, respectively. The analogous data for a
composite of SC symmetry are shown by the dashed lines. The matrix material considered is stiffer in z-
direction (E; = 5E) and, expectably, Cj, is growing with f increased and reaches at § = n/2 the maximum
value which, in turn, grows monotonically with ¢. For non-dilute concentrations (¢ = 0.1), the particles
arrangement type also affects the stiffness of composite: so, at ¢ = 0.5C}, is equal to 1.63 for SC and 1.93 for
BCC lattice case. The corresponding data for the normalized modulus Cj;/Cs; are given in Fig. 3. Unlike
Ci;» Ci; is reducing up to two times as f§ varies from 0 to m/2 whereas stiffness C3, in the direction of
rotation axis remains practically unchanged.

The last example we consider is a periodic composite with the unit cell containing N = 16 arbitrarily
oriented inclusions whose centers form a BCC lattice. On each run, the random number generator was

20

C* (e )/ C¥, (0)

Fig. 2. Normalized modulus Cj,/C; as a function of rotation angle .
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Fig. 3. Normalized modulus Cj;/Cj; as a function of rotation angle f.

Table 7

Effective elastic properties of a composite with BCC lattice (N = 16) of randomly oriented elastic inclusions, 1 =1
¢ Cii Ch Cis G Ci
0.1 2.219 0.589 0.694 9.344 1.011
0.2 2.261 0.601 0.701 8.467 1.023
0.3 2.304 0.613 0.708 7.665 1.035
0.4 2.348 0.626 0.715 6.935 1.048
0.5 2.393 0.639 0.724 6.290 1.060
0.6 2.440 0.653 0.735 5.730 1.074

utilized to prescribe orientation of each separate particle and, for ¢ given, averaging over 30 structure
realizations was made to get the statistically valid data. The obtained by this way effective moduli are given
in Table 7. Interestingly, these data are found to be practically invariant to the spatial arrangement of
particles: simulations carried out for a unit cell with randomly placed and oriented inclusions gave the
same, within 2-3%, results. This is correct, however, in the case 2 = 1 only. For a general type disordered
composite, both the arrangement and orientation statistics are to be taken into account.

6. Conclusions

The accurate and efficient analytical method has been developed to study the effective elastic properties
of a matrix type particulate composite with transversely isotropic phases. The microgeometry of composite
is modeled by a periodic structure with a unit cell containing a certain number of arbitrarily placed and
oriented spherical inclusions. The analytical, multipole series expansion method of solution has been de-
veloped reducing the complicated primary periodic boundary-value problem for 3D multiple-connected
domain to an ordinary set of linear algebraic equations and providing, thus, its high numerical efficiency.
By analytical averaging the strain and stress fields, the exact formulae for the effective stiffness tensor have
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been derived. The numerical results given show an accuracy of the method and disclose the way and extent
to which the selected structural parameters influence the macroscopic stiffness of composite.

Combination of the structural model flexible enough to approach an actual microstructure of composite
with the fast numerical algorithm makes the method developed to be an efficient tool for reliable predicting
the elastic properties of particulate composite with transversely isotropic phases. Although in the paper the
inclusions were assumed to be spherical, the method with minor modifications (Kushch, 1997a) can be
applied as well to study the effect of phase anisotropy in the composites with ellipsoidal inclusions and
penny-shaped cracks.

Appendix A. Partial solutions of the equilibrium equations of transversely isotropic elastic solid

The complete sets of partial vectorial solutions of the equilibrium equations of transversely isotropic
elastic solid have been introduced by Kushch (2004) using the well known representation of a general
solution by means of three potential functions

0P, 0P, 0P; 0P, 0P, 0P; y 09, Tk 09,
T Ox dy’ ”y_ay )Y a0 Ty o

The functions @; satisfy the quasi-harmonic equation

o? o? o?
<ax2+ayz+vjazz>¢j:0a Jj=123, (A2)

where v; = 2Cy4/(Cy; — C1») whereas v; and v, are roots of the equation
C1Cayv® — [(Cag)” — C11Caz — (Ci3 4 Cag) v + C33Caq = 0. (A.3)
In (A.1), k; and k, are given by the expressions

Ciiv; —Cu vi(Ci3+ Cas) .
b= L , =12 A4
T Cly+Cu Cs3 —v;iCy / (A4)

In the case v| # v,, representation (A.1) is general.
We introduce new spatial coordinates x; = x, y; = y, z; = z/,/V; to rewrite (A.2) as

02 02 0?
(g./z.ﬂ-a—y}-‘ra—#)(pj—o. (AS)

The sets of singular and regular solutions are given by (A.1), with the potential functions

. 1
th) = [ til(rjvdj) - Fts—l(rjvdj)]a
| (2r;r 1) (A6)
Y= OES)) (g, d) + £, d)], t=0,1,2,5 |s|<t+1,
where
—3)! .
F (o) = (o 0P ) explis),
' (A7)
— ¢!
frte.d) = L PP explisg)
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are the singular and regular, respectively, harmonic functions obtained by separation of variables in the
Laplace equation written in the spheroidal coordinates (Hobson, 1931), P’ and Q) are the associated
Legendre functions of the first and second kind, respectively. In (A.6), (¢;,7;, ¢;) are given for v; < 1 by the
modified prolate spheroidal coordinates

x+iy = djéjﬁj exp(i(/)j)a z=\/vjz; = \/V—jdjéjnj’

6] = (6/')2 -1, 0= 1 - (77,')2'

In the case v; > 1, one has to use the oblate spheroidal coordinates instead of prolate ones.

Note that, according to Hobson (1931), F* = f* = 0 for |s| > #; this condition, however, makes it im-
possible to represent some of the singular solutions in the form (A.1) and (A.6). To resolve for this diffi-
culty, we exploit the Podil’chuk’s (1984) idea and introduced the following, additional to (A.7), functions of
the form

(A.8)

1

D =

CHEOP M () expli(t +K)o), k=1,2,..., (A.9)

where

2t—|—k r (2t +k)!
i w// | poent = 2 St

for 0< p<1; for p < 0, P (p) = (=1)*P**(—p). For the explicit expressions of /,,, see Kushch (2004). It
is fairly straightforward to show that the functlons (A.9) are the singular solutions of the Laplace equations
but, unlike (A.7), they are discontinuous at z = 0. In the general series solution, however, these breaks
cancel each other and give the continuous and differentiable expressions of the displacement and stress
fields.

In (A.6), parameters of the modified spheroidal coordinate system (A.8) are chosen in a way that
¢; = £ = const at the surface » = R; i.e., S is the {-coordinate surface in each coordinate system introduced
by (A.8). We provide this by defining

dj:R/fjo, 5jo=\/m-

In this case, moreover, we have 1, = 0 and ¢; = ¢ for r = R, where (r,0, ¢) are the ordinary spherical
coordinates corresponding to the Cartesian ones (x, y,z). This is the key point: no matter how complicated
is solution in the bulk, at the interface we get the linear combination of regular spherical harmonics
Y:(0, @) = P’(cos 0) exp(ise). Under this circumstance, satisfaction the contact conditions at interface is the
nothing more than standard algebra. To get the explicit expressions of the vectorial functions introduced,
we substitute <15§jf) (A.6) into (A.1) and utilize the properties of the functions (A.7)

T (G iy ) ] = )

2+ 1) dy
i (i ) [ () + 7 (1) = F (), (A10)
d 0

T & )+ EL (D] = F(r.d).
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It gives us the following set of singular vectorial solutions:
] S— s kj S .
F,.”g)(r) =F ' (x,d)er — F (r;,d))es +7jv_th (rj,djes, j=1,2, (A1)
FO(r) = F ' (rs,ds)er + F 7 (s, ds)ea, t=0,1,2,..., [s|<t+]1,
where the complex Cartesian basis vectors are e; = (e, +ie,)/2,e, = (e, —ie,)/2 and e; = e..
At the spherical surface 7 = R, the functions F)(r) take the form

; o s ¢ s k; s s :
FO(r)|s = 0 (o) el — O (Eo) e +\/—1V7Qz(fjo)lze3, j=12, (A.12)

“)(r)\S:Q;*(m e, + O (&) es, t=0,1,2,..., |s|<t+1,

where i} = ; +S Y #(0, ¢); the representation (A.12) is suitable for satisfying the interfacial boundary con-
ditions (2) for displacements.
To satisfy the stress boundary conditions, we need similar expression of the traction vector T, = ¢ - n.
After somewhat involved algebra, we obtain the following representation of T,(FY)) at the surface S:
d; s—1 V'C127k~C13 o o
( ) J J ’ 1(6]0) X} lel

1
I T F — k T 1 /s—1 _ _
Cus ( )|S \/W |:( : ) (610) Gjo V;Ca4

1 (S—|—1) viCiy — k;Ci3
— (kg + 1 s+l 2 + J J +1 s+1e
= [+ 10 g + S SRR g e
+ (ki + 107 (So)pes, j=1,2, (A.13)
ds 1 ¢
= 1 (F® - /s 1 +(s—1 _30 .
G Tl = |0 () + (= D 220 ) 1
1 30
+—=10""(&0) — (s + 1) SO (&) |1 e +—= Q (Es0)77€3-
Vi Gy \F &
The results exposed above imply v; # v,. When v; = v,, solution (A.1) is not general because of F Fm
In this case, however, the general solution of V - ¢ = 0 can be represented as
6(151 oY 00; 0, oY 00, 0P, 0¥ C;3+3Cy
. —, =—tz———, =tz A.14
“E Tt % Ty YTy Ty o = T T Cht Cu (A-14)
or, in the vectorial form,
Ci3 +3Cy
=V +V x (Pse,)+ |zV—————e. |V, A.15
! 1 (se:) (Z Ci3+ Cy > ( )

where the potential function ¥ satisfies Eq. (A.2) with v = v;. To get the complete set of independent
solutions (A.11), one can take F) in the form

Ci3 +3Cu
Ciz3+ Cu

ts

F(r) = d, <zv - ez)Ff(rl,dl) + idi (1) V. (x1,dy). (A.16)

With the last term added, expression of F) at the surface » = R is rather simple:
&:10 — - 510

ngz)(rﬂs = \/Wm ijll(élo)lf 'e; — \/Wm fll(ilo);{f“ez
6 C13 + 3C44 . r
+ {sz 1(S10) — mQ,(ﬁm) %1€s. (A.17)

For the expression of the corresponding traction vector, see Podil’chuk (1984).
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The explicit form of the regular solutions ffj) is given by Eq. (A.11) with the replace F; to /7. To get the
expression of fV) and T,(f”) at the interface, one has to substitute Q¥(¢) by P/(¢) in (A 12) and (A.13),
respectively.

Appendix B. Evaluation of the triple lattice sums

The triply periodic solutions F, of the Laplace equation entering the expression of F,@ are

Fy(r ZFY + Ry, d), (B.1)

where Ry = a(kie, + k»e, + kze.), a being the cubic lattice period, and summation is made over all the in-
teger ki, k» and k3. Theory and application of the functions (B.1) for |s| <t is given elsewhere (Kushch,
1997a); below, we outline briefly an idea of the summation technique and give the necessary formulae.

Obtaining the local expansion of the periodic functions F,, is based on the re-expansion formulae for the
singular solid spheroidal harmonics F’ (Kushch, 1997a) written in our case d, = d, = d as

(r+R,d) Z Z ntk R dfk ,d), (B.2)

k=0 [I|<k

where the general expression of 7 is

(R, d) = ny) = (- k“ZNm S i (R, 2d), (B.3)

r -1 J 1 2j+t+k+1
Nuw = Valk +1/2)d* ™ ¢+ k+2r +1/2) x ( )_ (—) T(t+k+r+j+1/2)My,

(B.4)

and
My — - ('t+k+j+2),i' .
JUrt+j+3/2)rk+;+3/2)

Here, I'(z) is the Gamma-function and (n), is the Pochhammer’s symbol.
In the case of well-separated inclusions, namely for ||R|| > 2d, expression of #j, can be simplified to

(B.5)

s 2 k s
(R, d) = ’751{2 = ’ ZLtkr Stk (R), (B.6)
where the functions

50 =""P 000, and 5= T 100 (87)

are the singular and regular, respectively, solid spherical harmonics and
L = n(k 4 1/2)(d/2)” " My, (B.8)

In practice, this simplified formula provides an efficient calculation of 7, for ||R|| 2 2.5d, where the con-
vergence rate of the series (B.6) becomes sufficiently high. Noteworthy, all the above formulae remain valid
for the extended set of spheroidal harmonics given by (A.9) provided we define
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S17(r) = iy ¥ (cos O) expli(e + K)o (B.9)

Now, we apply (B.2) to all the terms of the sum (B.1) but one with k =0 to obtain, after change of
summation order, a local expansion of Fj in the vicinity of the point R = 0:

ﬁ'ﬁ?(ra d) = F;‘S(rv d) + Z Z ﬁtk‘sfl(()? d)fk[(rv d)a (B 10)
=0 [l <k
where the expansion coefficients are the triple infinite (lattice) sums
s (R, d) = Z’?Z;(R+Rkad)- (B.11)
kA0

In the vicinity of the point r = R # 0, the local expansion takes the form

Fulnd) =3 3 i (R ) 1, d), (B.12)

k=0 |I|<k

in this case, the term with k = 0 is present in the sum (B.11) as well.

Evaluation of the sums (B.11) is the most difficult and time-consuming part of numerical algorithm. We
make use advantage of possessing two representations of #j, to rewrite it in a suitable for computational
purpose form:

Red) = > iR+ Rid) = (R+ Ry, d)| + i) (R, ), (B.13)
I+ Ry ]| < 2.5d
where
"tkg R d ZLtkrSt+A+2rs (B14)
and
Ss(R) =D S/(R+Ru). (B.15)

k

The first term in (B.13) is a finite sum and, thus, the only remaining problem is evaluation of the lattice
sums S,. For [s| <¢, the efficient algorithms of fast summation are well developed now (e.g. Zinchenko,
1994). An attempt to extend the Evald’s summation technique on the spherical harmonics with |s| > ¢
meets, however, certain mathematical difficulties. Therefore, we shall apply here an alternate method of
summation based on using of double Fourier series. This method, used systematically by Golovchan et al.
(1993), is somewhat more involved but provides rather simple and efficient numerical realization. What is
important here, it works equally well for the sums (B.15) with |s| > ¢.

The summation technique is briefly shown below where we put, for simplicity sake, R = 0. Taking into
account that S, are absolutely convergent for ¢ > 2, we decompose them into a sum of two parts:

5,(0) = S(0) + 52 (0) = Z + Z Si(R (B.16)
(A; 0)  (k3#0)

The first term §,(s1> is a double series: to evaluate it, either the direct summation or, for the lower values of 7,
the fast summation technique described by Golovchan et al. (1993) can be applied. To find Sff), we rewrite
it as
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52(0) =" S (akse.). (B.17)
k3£0

In the half-spaces z< 0, 3,(;) is the regular double-periodic function and, thus, allows representation by the
double Fourier series

SO = (=1)"0, exp[—dyumlz] + i(ax + %,p)],  zS0, (B.18)
where
_ 2mm 2 2 2 s W t—s—1 Y
Oy = — (Omn)” = (otw)” + ()" and () = ﬁ(émn) (oty — 10t,). (B.19)

By combining (B.17) and (B.18) one obtains, after some algebra, the rapidly convergent series

SP(0) = [1+ (=1)™"T> " lexp(Sma) — 1] (B.20)

m,n

The formulae (B.16)—(B.20) are valid for |s| <¢+ 2 and thus can be used alone or as a supplement to the
Evald’s technique to evaluate the sums (B.15) and thus #,,, (B.11), entering the matrix of the resolving set of
Egs. (29).
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